Skip to main content
Log in

Elastic waveguides: history and the state of the art. II

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this paper, the normal modes of an elastic rectangular waveguide are analyzed. We retrace the key aspects of the almost 150-year history of this problem. Using the superposition method, we have obtained an analytical solution of the problem for four types of symmetry of the wave field. In addition, we have established important differences of the dispersion characteristics of normal modes in a rectangle from the Rayleigh–Lamb modes for an infinite plate and the Pochhammer–Chree modes for a cylinder. We give also an estimate of a series of approximate theories for a rectangular waveguide.

The numerical interpretation of the results of analysis is however necessary, and it is a degree of perfection which it would be very important to give to every application of analysis to the natural sciences. So long as it is not obtained, the solutions may be said to remain incomplete and useless, and the truth which it is proposed to discover is no less hidden in the formulas of analysis than it was in the physical problem itself.

                             J. Fourier [28, Sec. 13]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Bell, The Experimental Foundations of Solid Mechanics, Encyclopedia of Physics, Vol. VIa/1, Springer, Berlin (1973).

    Google Scholar 

  2. R. Berning, O. A. Hurzhii, and V. V. Meleshko, “Mixing of a viscous liquid in a rectangular microchannel,” Mat. Metody Fiz.-Mekh. Polya, 50, No. 4, 140–148 (2007).

    MATH  Google Scholar 

  3. Yu. F. Boltov and I. N. Grigor’ev, “Conditions of the dispersion-free propagation of elastic deformations in a solid waveguide with rectangular cross section,” Akust. Zh., 24, No. 3, 413–415 (1978).

    Google Scholar 

  4. A. A. Bondarenko, “On one method of determination of the complex roots of dispersion equations,” Dopov. Nats. Akad. Nauk Ukrainy, No. 12, 40–44 (2007).

  5. A. A. Bondarenko, “Normal stress waves in a rectangular elastic waveguide,” Akust. Visnyk, 10, No. 4, 12–27 (2007).

    MathSciNet  Google Scholar 

  6. A. E. Vovk, V. V. Gudkov, T. V. Levchenkova, and V. V. Tyutekin, “Normal modes of a solid rectangular waveguide,” Sov. Phys. Acoust., 26, 194–198 (1980).

    Google Scholar 

  7. V. T. Grinchenko, E. V. Kostrzhitskaya, and V. V. Meleshko, “Group and phase velocities of normal modes in a rectangular waveguide,” Dopov. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 45–48 (1989).

  8. V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  9. V. T. Grinchenko and V. V. Meleshko, “Properties of harmonic waves propagating along the edge of a right-angle wedge,” Sov. Phys. Acoust., 27, 112–116 (1981).

    Google Scholar 

  10. V. T. Grinchenko and V. V. Meleshko, “Dispersion properties of normal modes in a rectangular elastic waveguide,” in: X All-Union Acoust. Conf. (Moscow, June 23–27, 1983), Sec. A, Acoust. Inst., Moscow (1983), pp. 96–99.

  11. V. T. Grinchenko and A. F. Ulitko, “A dynamic problem of elasticity theory for a rectangular prism,” Sov. Appl. Mech., 7, 979–984 (1971).

    Article  Google Scholar 

  12. P. A. Daugin, Traité Élémentaire de Physique Théorique et Expérimentale, Tome I, Dezobry & Magdeleine, Paris (1855).

    Google Scholar 

  13. P. L. Kapitsa, Experiment, Theory, and Practice [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  14. E. V. Kostrzhitskaya and V. V. Meleshko, “Propagation of harmonic waves in an elastic rectangular waveguide,” Sov. Appl. Mech., 26, 773–781 (1990).

    Article  MATH  Google Scholar 

  15. V. V. Meleshko, “Improved theories for rectangular elastic waveguides,” Soviet Appl. Mech., 15, 1189–1193 (1979).

    Article  Google Scholar 

  16. V. V. Meleshko, “Propagation of high-frequency longitudinal modes in a rectangular waveguide,” Dopov. Akad. Nauk Ukr. SSR, Ser A, No. 2, 36–40 (1982).

  17. V. V. Meleshko, “Homogeneous solutions for an elastic rectangular bar,” in: Topical Aspect of Physicomechanical Investigations, Mechanics, Naukova Dumka, Kiev (2007), pp. 205–231.

    Google Scholar 

  18. V. V. Meleshko and A. A. Bondarenko, “The phenomena of “repulsing curves”—a view 30 years later,” Visnyk Dnipropetr. Univ., Ser. Mekhanika, 2, No. 2, 123–128 (2006).

    Google Scholar 

  19. V. V. Meleshko, A. A. Bondarenko, S. A. Dovgiy, A. N. Trofimchuk, and G. J. F. van Heijst, “Elastic waveguides: history and the state of the art. I,” J. Math. Sci., 162, No. 1, 99–120 (2009).

    Article  MathSciNet  Google Scholar 

  20. Lord Rayleigh, The Theory of Sound, Vol. 1, Macmillan, London (1877).

    Google Scholar 

  21. B. Aalami, “Waves in prismatic guides of arbitrary cross section,” Trans. ASME, J. Appl. Mech., 40, 1067–1072 (1973).

    Google Scholar 

  22. H. N. Abramson, P. J. Plass, and E. Rippinger, “Stress wave propagation in rods and beams,” Adv. Appl. Mech., 1, 1284–1286 (1948).

    Google Scholar 

  23. A. D. S. Barr, “Torsional waves in uniform rods of non-circular section,” J. Mech. Eng. Sci., 4, 127–135 (1962).

    Article  Google Scholar 

  24. M. de Billy, “End resonance in infinite immersed rods of different cross sections,” J. Acoust. Soc. Am., 100, 92–97 (1996).

    Article  Google Scholar 

  25. R. E. Booker, “Velocity dispersion of isotropic rods of square cross section vibrating in the lowest-order longitudinal mode,” J. Acoust. Soc. Am., 45, 1284–1286 (1969).

    Article  Google Scholar 

  26. R. E. Booker, “Velocity dispersion of the lowest-order longitudinal mode in finite rods of square cross sections,” J. Acoust. Soc. Am., 49, 1671–1672 (1971).

    Article  Google Scholar 

  27. C. Chree, “On longitudinal vibrations,” Quart. J. Pure Appl. Math., 23, 317–342 (1889).

    Google Scholar 

  28. J. Fourier, The Analytical Theory of Heat, Dover, New York (1955).

    MATH  Google Scholar 

  29. W. B. Fraser, “Stress wave propagation in rectangular bars,” Int. J. Solids Struct., 5, 379–397 (1969).

    Article  Google Scholar 

  30. W. B. Fraser, “Longitudinal elastic waves in square bars,” Trans. ASME, J. Appl. Mech., 37, 537–538 (1970).

    Google Scholar 

  31. E. Giebe and E. Blechschmidt, “Experimentelle und theoretische Untersuchungen über Dehnungseigenschwingungen von Stäben und Rohren. II,” Ann. Physik, 410, Issue 5, 457–485 (1933).

    Article  Google Scholar 

  32. W. A. Green, “Vibration of beams — II. Torsional modes,” Quart. J. Mech. Appl. Math., 10, 74–78 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  33. W. A. Green, “Vibration of beams — III. Screw modes,” Quart. J. Mech. Appl. Math., 12, 22–28 (1959).

    Article  MATH  Google Scholar 

  34. W. A. Green, “Dispersion relations for elastic waves in bars,” in: Progress in Solid Mechanics, North-Holland, Amsterdam, Vol. 1 (1959), pp. 225–261.

    Google Scholar 

  35. T. Hayashi, W. J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example,” Ultrasonics, 41, 175–183 (2003).

    Article  Google Scholar 

  36. T. Hayashi, C. Tamayama, and M. Murase, “Wave structure analysis of guided waves in a bar with an arbitrary cross-section,” Ultrasonics, 44, 17–24 (2006).

    Article  Google Scholar 

  37. P. Hertelendy, “An approximate theory governing symmetric motions of elastic rods of rectangular or square cross section,” Trans. ASME, J. Appl. Mech., 35, 333–341 (1968).

    Google Scholar 

  38. G. J. Kynch, “Longitudinal and screw vibrations of beams,” Nature, 175, 559 (1955).

    Article  Google Scholar 

  39. G. J. Kynch, “The fundamental modes of vibration of uniform beams for medium wavelengths,” Brit. J. Appl. Phys., 8, 64–73 (1957).

    Article  Google Scholar 

  40. G. J. Kynch and W. A. Green, “Vibration of beams — I. Longitudinal modes,” Quart. J. Mech. Appl. Math., 10, 63–73 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Lamé, Leçons sur la Théorie Mathématique de L’élasticité des Corps Solides, Mallet-Bachelier, Paris (1852).

    Google Scholar 

  42. G. Lamé, Leçons sur les Coordonnées Curvilignes et Leurs Diverses Applications, Mallet-Bachelier, Paris (1859).

    Google Scholar 

  43. X. Lü and J. Chu, “Lattice thermal conductivity in a silicon nanowire with square cross section,” J. Appl. Phys., 100, 014305-1–014305-6 (2006).

    Google Scholar 

  44. X. Lü, J. Chu, and W. Z. Shen, “Modification of the lattice thermal conductivity in semiconductor rectangular nanowires,” J. Appl. Phys., 93, 1219–1229 (2003).

    Article  Google Scholar 

  45. H. D. McNiven and J. J. McCoy, “Vibration and wave propagation in rods,” in: R. D. Mindlin and Applied Mechanics, Pergamon, New York (1974), pp. 197–225.

    Google Scholar 

  46. M. A. Medick, “One-dimensional theories of wave propagation and vibrations in elastic bars of rectangular section,” Trans. ASME, J. Appl. Mech., 33, 489–495 (1966).

    MathSciNet  Google Scholar 

  47. M. A. Medick, “On plate theory and longitudinal waves in noncircular bars,” Trans. ASME, J. Appl. Mech., 34, 513–515 (1967).

    Google Scholar 

  48. M. A. Medick, “On dispersion of longitudinal waves in rectangular bars,” Trans. ASME, J. Appl. Mech., 34, 714–717 (1967).

    Google Scholar 

  49. M. A. Medick, “Extensional waves in elastic bars of rectangular section,” J. Acoust. Soc. Am., 43, 152–161 (1968).

    Article  Google Scholar 

  50. T. R. Meeker and A. H. Meitzler, “Guided wave propagation in elongated cylinders and plates,” in: Physical Acoustics. Principles and Methods, Vol. 1A, Academic, New York (1964), pp. 111–167.

    Google Scholar 

  51. R. D. Mindlin and E. A. Fox, “Vibrations and waves in elastic bars of rectangular cross section,” Trans. ASME, J. Appl. Mech., 27, 152–158 (1960).

    MathSciNet  Google Scholar 

  52. T. Miyamoto and K. Yasuura, “Numerical analysis on isotropic elastic waveguides by mode-matching method. — II. Particle velocities and dispersion characteristics in rods of rectangular cross section,” IEEE Trans. Sonics Ultrason., SU-24, 369–375 (1977).

    Google Scholar 

  53. R. W. Morse, “Dispersion of compressional waves in isotropic rods of rectangular cross section,” J. Acoust. Soc. Am., 20, 585–586 (1948).

    Article  Google Scholar 

  54. R. W. Morse, “Dispersion of compressional waves in isotropic rods of rectangular cross section,” J. Acoust. Soc. Am., 20, 833–838 (1948).

    Article  Google Scholar 

  55. R. W. Morse, “The velocity of compressional waves in rods of rectangular cross section,” J. Acoust. Soc. Am., 22, 219–223 (1950).

    Article  Google Scholar 

  56. K. Nagaya, “Stress wave propagation in a bar of arbitrary cross section,” Trans. ASME, J. Appl. Mech., 49, 157–164 (1982).

    Article  MATH  Google Scholar 

  57. A. H. Nayfeh and W. G. Abdelrahman, “An approximate model for wave propagation in rectangular rods and their geometrical limits,” J. Vibr. Control, 6, 3–17 (2000).

    Article  Google Scholar 

  58. N. J. Nigro, “Steady-state wave propagation in infinite bars of noncircular cross section,” J. Acoust. Soc. Am., 40, 1501–1508 (1966).

    Article  Google Scholar 

  59. N. Nishiguchi, “Electron scattering by surface vibration in a rectangular quantum wire,” Physica, E13, 1–10 (2002).

    Google Scholar 

  60. N. Nishiguchi, Y. Ando, and M. N. Wybourne, “Acoustic phonon modes of rectangular quantum wires,” J. Phys.: Condens. Matter, 9, 5751–5764 (1999).

    Article  Google Scholar 

  61. J. Oliver, “Elastic wave dispersion in a cylindrical rod by a wide-band, short-duration pulse technique,” J. Acoust. Soc. Am., 29, 189–194 (1957).

    Article  Google Scholar 

  62. F. Savart, “Recherchés sur les vibrations longitudinales,” Ann. Chimie Physique (Ser. 2), 65, 337–402 (1837).

    Google Scholar 

  63. N. G. Stephen and P. J. Wang, “Saint-Venant decay rates for the rectangular cross section rod,” Trans. ASME, J. Appl. Mech., 71, 429–433 (2004).

    Article  MATH  Google Scholar 

  64. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., 36, 381–411 (2004).

    Article  Google Scholar 

  65. A. D. Stroock., S. K. W. Dertinger, A. Ajdari, et al., “Chaotic mixer for microchannels,” Science, 295, 647–651 (2002).

    Article  Google Scholar 

  66. A. D. Stroock and G. J. McGraw, “Investigation of the staggered herringbone mixer with a simple analytical model,” Philos. Trans. Roy. Soc. London, A362, 971–986 (2004).

    Google Scholar 

  67. K. Tanaka and Y. Iwahashi, “Dispersion relation of elastic waves in bars of rectangular cross section,” Bull. JSME, 20, 922–929 (1977).

    Google Scholar 

  68. K. Taweel, S. B. Dong, and M. Kazic, “Wave reflection from the free end of a cylinder with an arbitrary cross-section,” Int. J. Solids Struct., 37, 1701–1726 (2000).

    Article  MATH  Google Scholar 

  69. R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am., 64, 1–37 (1978).

    Article  MATH  Google Scholar 

  70. J. E. Wade and P. J. Torvik, “Elastic wave-propagation in inhomogeneous bars of several sections,” Trans. ASME, J. Appl. Mech., 40, 1050–1054 (1973).

    Google Scholar 

  71. K. Yasuura and T. Miyamoto, “Numerical analysis on isotropic elastic waveguides by mode-matching method. — I. Analytical foundations and general algorithms,” IEEE Trans. Sonics Ultrason., SU-24, 359–368 (1977).

    Google Scholar 

  72. J. Zemanek, “An experimental and theoretical investigation of elastic wave propagation in a cylinder,” J. Acoust. Soc. Am., 51, 265–283 (1972).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 4, pp. 163–180, October–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshko, V.V., Bondarenko, A.A., Trofimchuk, A.N. et al. Elastic waveguides: history and the state of the art. II. J Math Sci 167, 197–216 (2010). https://doi.org/10.1007/s10958-010-9915-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9915-z

Keywords

Navigation