Skip to main content
Log in

Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign density

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study the asymptotic behavior of the spectrum of the Dirichlet problem for a formally selfadjoint elliptic system of differential equations with rapidly oscillating coefficients and changing sign density ρ. Since the factor ρ at the spectral parameter changes sign, the problem possesses two – positive and negative – infinitely large sequences of eigenvalues. Their asymptotic structure essentially depends on whether the mean \( \overline \rho \) over the periodicity cell vanishes. In particular, in the case \( \overline \rho = 0 \), the homogenized problem becomes a quadratic pencil. Bibliography: 20 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nečas, Les méthodes in théorie des équations elliptiques, Masson-Academia, Paris-Prague (1967).

    Google Scholar 

  2. S. A. Nazarov, “Selfadjoint elliptic boundary value problems. The polynomial property and formally positive operators” [in Russian], Probl. Mat. Anal. 16, 167–192 (1997); English transl.: J. Math. Sci., New York 92, No. 6, 4338–4353 (1998).

    Google Scholar 

  3. S. A. Nazarov, “The polynomial property of selfadjoint elliptic boundary value problems and the algebraic description of their attributes” [in Russian], Uspekhi Mat. Nauk 54, No. 5, 77–142 (1999); English transl.: Russ. Math. Surv. 54, No. 5, 947–1014 (1999).

    MathSciNet  Google Scholar 

  4. O. A. Ladyzhenskaya, Boundary-Value Problems in Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  5. S. G. Lekhnitskij, Theory of Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977); English transl.: Mir Publishers, Moscow (1981).

    Google Scholar 

  6. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchanaya Kniga (IDMI), Novosibirck (2002).

  7. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Mechanics of Connected Fields in Elements of Constructions [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  8. V. Z. Parton and B. A. Kudryavtsev, Electric/elasticity of piezoelectric and electrically conducting bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  9. S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillaitons of a piezoelectric plate” [in Russian], Probl. Mat. Anal. 25, 99–188 (2003); English transl.: J. Math. Sci., New York 144, No. 5, 1657–1725 (2003).

    MATH  Google Scholar 

  10. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space [in Russian], Leningrad State University, Leningrad (1980).

    Google Scholar 

  11. S. Kesavan, “Homogenization of Elliptic Eigenvalue Problems: Part 1,” Appl. Math. Optim. 5, 153–167 (1979); Part 2: ibid. 5, 197–216 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functions [in Russian], Fizmatgiz, Moscow (1993); English transl.: Springer, Berlin etc. (1994).

    Google Scholar 

  13. M. Vanninatan, “Homogenization of eigenvalue problems in perforated domains,” Pro. Indian Acad. Sci. (Math. Sci.) 90, No. 3, 239–271 (1981).

    Article  Google Scholar 

  14. O. A. Oleinik, A. S. Shamaev, and G. A. Yosifyan, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media [in Russian], Moscow State Univ., Moscow (1990).

    Google Scholar 

  15. G. Cardone, A. Corbo Esposito, and S. A. Nazarov, “Korn’s inequality for periodic solids and convergence rate of homogenization,” Appl. Anal. 88, No. 6, 847–876 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  16. I. M. Gelfand and G. E. Shilov, Generalized Functions and Operations over Them [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  17. M. I. Vishik and L. A. Lusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter” [in Russian] Uspekhi Mat. Nauk 12, No. 5, 3–122 (1957).

    MATH  Google Scholar 

  18. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space [in Russian], Nauka, Moscow (1965); English transl.: Am. Math. Soc., Providence, RI (1969).

    Google Scholar 

  19. S. A. Nazarov, “On the asymptotics of the spectrum of a thin plate problem of elasticity” [in Russian], Sib. Mat. Zh. 41, No. 4, 895–912 (2000); English transl.: Sib. Math. J. 41, No. 4, 744–750 (2000).

    MATH  Google Scholar 

  20. V. L. Berdicevskii, “High-frequency longwave oscillations of plates” [in Russian], Dokl. Akad. Nauk SSSR 236, No. 6, 1319–1322 (1977).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Problems in Mathematical Analysis 48, July 2010, pp. 75–107

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A., Pyatnitskii, A.L. Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign density. J Math Sci 169, 212–248 (2010). https://doi.org/10.1007/s10958-010-0047-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0047-2

Keywords

Navigation