Skip to main content

Advertisement

Log in

Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko’s conjecture

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, a description of the structure of all finite-dimensional, locally bounded quasirepresentations of arbitrary connected Lie groups is given and the proof of Mishchenko’s conjecture for connected, locally compact groups and a proof of an analog of the van derWaerden theorem (i.e., the automatic continuity condition for all locally bounded, finite-dimensional representations) for the commutator subgroup of an arbitrary connected Lie group are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abel and K. Jarosz, “Small deformations of topological algebras,” Stud. Math., 156, No. 3, 202–226 (2003).

    Article  MathSciNet  Google Scholar 

  2. J. Araujo and K. Jarosz, “Separating maps on spaces of continuous functions,” in: Function Spaces. Proc. 3rd Conf., Edwardsville, IL, 1998, Contemp. Math., Vol. 232, Amer. Math. Soc., Providence (1999), pp. 33–37.

    Google Scholar 

  3. R. W. Bagley, T. S. Wu, and J. S. Yang, “Pro-Lie groups,” Trans. Amer. Math. Soc., 287, No. 2, 829–838 (1985).

    MATH  MathSciNet  Google Scholar 

  4. J. W. Baker and B. M. Lashkarizadeh, “Representations and positive definite functions on topological semigroups,” Glasgow Math. J., 38, No. 1, 99–111 (1996).

    MATH  MathSciNet  Google Scholar 

  5. J. Baker, J. Lawrence, and F. Zorzitto, “The stability of equation f(xy) = f(x)f(y),” Proc. Amer. Math. Soc., 74, No. 2, 242–246 (1979).

    MATH  MathSciNet  Google Scholar 

  6. S. Banach, Théorie des Opérations Linéaires, Monogr. Mat., PWN, Warszaw (1932).

    Google Scholar 

  7. A. Banyaga, “Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,” Comment. Math. Helv., 53, No. 2, 174–227 (1978).

    MATH  MathSciNet  Google Scholar 

  8. J. Barge and E. Ghys, “Surfaces et cohomologie bornée,” Invent. Math., 92, 509–526 (1988).

    MATH  MathSciNet  Google Scholar 

  9. J. Barge and E. Ghys, “Cocycles d’Euler et de Maslov,” Math. Ann., 294, No. 2, 235–265 (1992).

    MATH  MathSciNet  Google Scholar 

  10. C. Bavard, “Longueur stable des commutateurs,” Enseign. Math., 37, 109–150 (1991).

    MATH  MathSciNet  Google Scholar 

  11. E. J. Beggs, Pointwise Bounded Asymptotic Morphisms and Thomsen’s Non-Stable k-Theory, arXiv:math.OA/0201051 (2002).

  12. M. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T), http://perso.univ-rennes1.fr/bachir.bekka/KazhdanTotal.pdf (2004)

  13. G. Besson, Sur la Cohomologie Bornée, Report, Séminaire cohomologie bornée, Éc. Norm. Sup. Lyon (Février 1988).

  14. P. Biran, M. Entov, and L. Polterovich, “Calabi quasimorphisms for the symplectic ball,” Commun. Contemp. Math., 6, No. 5, 793–802 (2004).

    MATH  MathSciNet  Google Scholar 

  15. B. Blackadar and E. Kirchberg, “Generalized inductive limits of finite-dimensional C*-algebras,” Math. Ann., 307, No. 3, 343–380 (1997).

    MATH  MathSciNet  Google Scholar 

  16. A. Borel, “Sections locales de certains espaces fibrés,” C. R. Acad. Sci. Paris, 230, 1246–1248 (1950).

    MATH  MathSciNet  Google Scholar 

  17. A. Bouarich, “Suites exactes en cohomologie bornée réelle des groups discrets,” C. R. Acad. Sci. Paris, 320, 1355–1359 (1995).

    MATH  MathSciNet  Google Scholar 

  18. N. Bourbaki, Lie Groups and Lie Algebras. Chapters 7–9, Springer, Berlin (2005).

    MATH  Google Scholar 

  19. R. Brooks, “Some remarks on bounded cohomology,” in: Riemann Surfaces and Related Topics, Proc. 1978 Stony Brook Conf., State Univ. New York, Stony Brook, NY, 1978, Ann. Math. Stud., Vol. 97, Princeton Univ. Press, Princeton (1981), pp. 53–63.

    Google Scholar 

  20. L. G. Brown, “Continuity of actions of groups and semigroups on Banach spaces,” J. London Math. Soc. (2), 62, No. 1, 107–116 (2000).

    MATH  MathSciNet  Google Scholar 

  21. L. G. Brown, R. G. Douglas, and P. A. Fillmore, “Extensions of C*-algebras and K-homology,” Ann. Math., 105, No. 2, 265–324 (1977).

    MathSciNet  Google Scholar 

  22. L. G. Brown and N. C. Wong, “Unbounded disjointness preserving linear functionals,” Monatsh. Math., 141, No. 1, 21–32 (2004).

    MATH  MathSciNet  Google Scholar 

  23. J. Brzdek, “On orthogonally exponential and orthogonally additive mappings,” Proc. Amer. Math. Soc., 125, 2127–2132 (1997).

    MATH  MathSciNet  Google Scholar 

  24. T. Bühler, Gromov’s Geodesic Flow, Diplomarbeit, ETZ: Zürich (2002).

    Google Scholar 

  25. M. Burger and A. Iozzi, “Boundary maps in bounded cohomology,” Geom. Funct. Anal., 12, No. 2, 281–292 (2002).

    MATH  MathSciNet  Google Scholar 

  26. M. Burger and N. Monod, “Continuous bounded cohomology and applications to rigidity theory,” Geom. Funct. Anal., 12, No. 2, 219–280 (2002).

    MATH  MathSciNet  Google Scholar 

  27. M. Burger and N. Monod, “On and around the bounded cohomology of SL2,” in: Rigidity in Dynamics and Geometry, Contrib. from the Programme Ergodic Theory, Geometric Rigidity and Number Theory, Isaac Newton Inst. for the Math. Sci., Cambridge, January 5–July 7, 2000, Springer, Berlin (2002), pp. 19–37.

  28. R. C. Busby, “Double centralizers and extensions of C*-algebras,” Trans. Amer. Math. Soc., 132, No. 1, 79–99 (1968).

    MATH  MathSciNet  Google Scholar 

  29. E. Calabi, “On the group of automorphisms of a symplectic manifold,” Problems in Analysis (Lectures at the Symp. in Honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969 ), Princeton Univ. Press, Princeton (1970), pp. 1–26.

    Google Scholar 

  30. M. Cambern, “On isomorphisms with small bound,” Proc. Amer. Math. Soc., 18, 1062–1066 (1967).

    MATH  MathSciNet  Google Scholar 

  31. É. Cartan, “Les groupes réels simples, finis et continus,” Ann. Sci. École Norm. Sup. (3), 31, 263–355 (1914).

    MathSciNet  Google Scholar 

  32. E. Christensen, “Close operator algebras,” in: Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst., Castelvecchio–Pascoli/Italy, 1986, NATO ASI Ser., Ser. C, Math. Phys. Sci., Vol. 247, Kluwer Academic, Dordrecht (1988), pp. 537–556.

    Google Scholar 

  33. E. Christensen, E. G. Effros, and A. Sinclair, “Completely bounded multilinear maps and C*-algebraic cohomology,” Invent. Math., 90, No. 2, 279–296 (1987).

    MATH  MathSciNet  Google Scholar 

  34. A. Connes, M. L. Gromov, and H. Moscovici, “Conjecture de Novikov et fibrés presque plats,” C. R. Acad. Sci. Paris, Sér. I Math., 310, No. 5, 273–277 (1990).

    MATH  MathSciNet  Google Scholar 

  35. A. Connes and N. Higson, Almost homomorphisms and KK-theory, http://www.math.psu.edu/higson/Papers/ch1.pdf (1989).

  36. A. Connes and N. Higson, “Déformations, morphismes asymptotiques et K-théorie bivariante,” C. R. Acad. Sci. Paris, Sér. I Math., 311, No. 2, 101–106 (1990).

    MATH  MathSciNet  Google Scholar 

  37. G. Corach and J. E. Galé, “On amenability and geometry of spaces of bounded representations,” J. London Math. Soc. (2), 59, No. 1, 311–329 (1999).

    MathSciNet  Google Scholar 

  38. J. Cuntz, “Bivariante K-Theorie für lokalkonvexe Algebren und der bivariante Chern–Connes-Charakter,” Doc. Math., 2, 139–182 (1997).

    MATH  MathSciNet  Google Scholar 

  39. J. Cuntz, Bivariant K-Theory and the Weyl Algebra, arXiv:math.KT/0401295 (2004).

  40. M. Dadarlat and S. Eilers, “Asymptotic unitary equivalence in KK-theory,” K-Theory, 23, 305–322 (2001).

    MATH  MathSciNet  Google Scholar 

  41. H. G. Dales, F. Ghahramani, and A. Ya. Helemskii, “The amenability of measure algebras,” J. London Math. Soc. (2), 66, No. 1, 213–226 (2002).

    MATH  MathSciNet  Google Scholar 

  42. H. G. Dales and A. R. Villena, “Continuity of derivations, intertwining maps, and cocycles from Banach algebras,” J. London Math. Soc. (2), 63, No. 2, 215–225 (2001).

    MATH  MathSciNet  Google Scholar 

  43. S. G. Dani and C. R. E. Raja, “Asymptotics of measures under group automorphisms and an application of factor sets,” in: Lie Groups and Ergodic Theory. Proc. Int. Colloq., Mumbai, India, January 4–12, 1996, Tata Inst. Fundam. Res. Stud. Math., Vol. 14, Narosa Publ. Hause, New Delhi (1998), pp. 59–73.

    Google Scholar 

  44. M. M. Day, Normed Linear Spaces, Ergebnisse Math. ihrer Grenzgebiete, Vol. 21, Springer, Berlin (1958).

    MATH  Google Scholar 

  45. G. Debs and J. Saint Raymond, “Compact covering mappings between Borel sets and the size of constructible reals,” Trans. Amer. Math. Soc., 356, No. 1, 73–117 (2004).

    MATH  MathSciNet  Google Scholar 

  46. R. Dedekind, “Erlauterungen zu den Fragmenten, XXVIII,” in: Collected Works of Bernhard Riemann, Dover, New York (1953), pp. 466–478.

    Google Scholar 

  47. J. Dixmier, C*-Algèbres et Leurs Réprésentations, Dunod, Paris (1969).

    Google Scholar 

  48. J. Duncan and S. A. R. Hosseiniun, “The second dual of a Banach algebra,” Proc. Roy. Soc. Edinburgh Sect. A, 19, 309–325 (1979).

    MathSciNet  Google Scholar 

  49. N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Wiley–Interscience, New York (1988).

    MATH  Google Scholar 

  50. J.-L. Dupont, “Simplicial de Rham cohomology and characteristic classes of flat bundles,” Topology, 15, 233–245 (1976).

    MATH  MathSciNet  Google Scholar 

  51. E. G. Effros and Z.-J. Ruan, Operator Spaces, London Math. Soc., New Ser., Vol. 23, Clarendon Press, Oxford Univ. Press, Oxford (2000).

    MATH  Google Scholar 

  52. S. Eilers and T. A. Loring, “Computing contingencies for stable relations,” Internat. J. Math., 10, No. 3, 301–326 (1999).

    MATH  MathSciNet  Google Scholar 

  53. G. A. Elliott and Q. Lin, “Cut-down method in the inductive limit decomposition of non-commutative tori,” J. London Math. Soc. (2), 54, No. 1, 121–134 (1996).

    MATH  MathSciNet  Google Scholar 

  54. R. Engelking, General Topology, Heldermann, Berlin (1989).

    MATH  Google Scholar 

  55. M. Entov, “Commutator length of symplectomorphisms,” Comment. Math. Helv., 79, 58–104 (2004).

    MATH  MathSciNet  Google Scholar 

  56. M. Entov and L. Polterovich, “Calabi quasimorphism and quantum homology,” Internat. Math. Res. Notices, 30, 1635–1676 (2003).

    MathSciNet  Google Scholar 

  57. R. Exel and M. Laca, “Continuous Fell bundles associated to measurable twisted actions,” Proc. Amer. Math. Soc., 125, No. 3, 795–799 (1997).

    MATH  MathSciNet  Google Scholar 

  58. R. Exel and T. A. Loring, “Invariants of almost commuting unitaries,” J. Funct. Anal., 95, No. 2, 364–376 (1991).

    MATH  MathSciNet  Google Scholar 

  59. R. Eymard, “L’algèbre de Fourier d’un groupe localement compact,” Bull. Soc. Math. France, 92, 181–236 (1964).

    MATH  MathSciNet  Google Scholar 

  60. V. A. Faiziev, “Pseudocharacters on free products of semigroups,” Funct. Anal. Appl., 21, No. 1, 77–79 (1987).

    MathSciNet  Google Scholar 

  61. V. A. Faiziev, “Pseudocharacters on free groups and on certain group constructions,” Russ. Math. Surv., 43, No. 5, 219–220 (1988).

    MathSciNet  Google Scholar 

  62. B. L. Feigin and D. B. Fuks, “Cohomologies of Lie groups and Lie algebras,” in: Lie Groups and Lie Algebras, II, Encycl. Math. Sci., Vol. 21, Springer, Berlin (2000), pp. 125–223.

    Google Scholar 

  63. B. E. Forrest and V. Runde, “Amenability and weak amenability of the Fourier algebra,” Math. Z., 250, 731–744 (2004).

    MathSciNet  Google Scholar 

  64. G. L. Forti, “The stability of homomorphisms and amenability, with applications to functional equations,” Abh. Math. Sem. Univ. Hamburg, 57, 215–226 (1987).

    MATH  MathSciNet  Google Scholar 

  65. H. Freudenthal, “Beziehungen der E7 und E8 zur Oktavebene. I,” Indag. Math., 16, No. 3, 218–230 (1954).

    MathSciNet  Google Scholar 

  66. S. A. Gaal, Linear Analysis and Representation Theory, Springer, New York (1973).

    MATH  Google Scholar 

  67. J.-M. Gambaudo and É. Ghys, “Commutators and diffeomorphisms of surfaces,” Ergodic Theory Dynam. Syst., 24, No. 5, 1591–1617 (2004).

    MATH  MathSciNet  Google Scholar 

  68. É. Ghys, “Groups acting on the circle,” Enseign. Math. (2), 47, No. 3-4, 329–407 (2001).

    MATH  MathSciNet  Google Scholar 

  69. G. Gong and H. Lin, “Almost multiplicative morphisms and almost commuting matrices,” J. Operator Theory, 40, No. 2, 217–275 (1998).

    MATH  MathSciNet  Google Scholar 

  70. G. Gong and H. Lin, “Almost multiplicative morphisms and K-theory,” Internat. J. Math., 11, No. 8, 983–1000 (2000).

    MATH  MathSciNet  Google Scholar 

  71. F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand Math. Stud., Vol. 16, Van Nostrand, London (1969).

    MATH  Google Scholar 

  72. R. I. Grigorchuk, “Some results on bounded cohomology,” in: A. J. Duncan, N. D. Gilbert, and J. Howie, eds., Combinatorial and Geometric Group Theory, Proc. Workshop Held at Heriot-Watt University, Edinburgh, 1993, London Math. Soc. Lect. Note Ser., Vol. 204, pp. 111–163, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  73. M. Gromov, “Volume and bounded cohomology,” Inst. Hautes Études Sci. Publ. Math., 56, 5–99 (1982).

    MATH  MathSciNet  Google Scholar 

  74. M. Gromov, “Positive curvature, macroscopic dimension, spectral gaps and higher signatures,” in: Functional Analysis on the Eve of the 21st Century, Vol. II, Birkhäuser, Boston (1996), pp. 1–213.

    Google Scholar 

  75. N. Gronbak, “Amenability of weighted convolution algebras on locally compact groups,” Trans. Amer. Math. Soc., 319, No. 2, 765–775 (1990).

    MathSciNet  Google Scholar 

  76. N. Gronbak, B. E. Johnson, and G. A. Willis, “Amenability of Banach algebras of compact operators,” Israel J. Math., 87, No. 1–3, 289–324 (1994).

    MathSciNet  Google Scholar 

  77. K. Grove, H. Karcher, and E. A. Ruh, “Jacobi fields and Finsler metrics on a compact Lie groups with an application to differential pinching problems,” Math. Ann., 211, No. 1, 7–21 (1974).

    MATH  MathSciNet  Google Scholar 

  78. E. Guentner, N. Higson, and J. Trout, Equivariant E-Theory for C*-Algebras, Mem. Amer. Math. Soc., Vol. 703, Amer. Math. Soc. (2000).

  79. A. Guichardet, Cohomologie des Groupes Topologiques et des Algèbres de Lie, Cedic/Fernand Nathan, Paris (1980).

    MATH  Google Scholar 

  80. A. Guichardet and D. Wigner, “Sur la cohomologie réelle des groupes de Lie simples réels,” Ann. Sci. École Norm. Sup. (4), 11, 277–292 (1978).

    MATH  MathSciNet  Google Scholar 

  81. P. de la Harpe, Topics in Geometric Group Theory, Chicago Lect. Math., Univ. of Chicago Press, Chicago (2000).

    MATH  Google Scholar 

  82. P. de la Harpe and M. Karoubi, “Représentations approchées d’un groupe dans une algébre de Banach,” Manuscripta Math., 22, No. 3, 293–310 (1977).

    MATH  MathSciNet  Google Scholar 

  83. A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Math. Appl. (Sov. Ser.), Vol. 41, Kluwer Academic, Dordrecht (1989).

    Google Scholar 

  84. A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford Univ. Press, New York (1993).

    Google Scholar 

  85. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962).

    MATH  Google Scholar 

  86. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Structure of Topological Groups, Integration Theory, Group Representations, Grundlehren Math. Wiss., Vol. 115, Springer, Berlin (1979).

    Google Scholar 

  87. N. Higson, “A primer on KK-theory,” in: Operator Theory: Operator Algebras and Applications, Proc. Summer Res. Inst., Durham, USA, 1988, Proc. Sympos. Pure Math., Vol. 51, Part 1, Amer. Math. Soc., Providence (1990), pp. 239–283.

    Google Scholar 

  88. N. Higson and J. Roe, “Amenable group actions and the Novikov conjecture,” J. Reine Angew. Math., 519, 143–153 (2000).

    MATH  MathSciNet  Google Scholar 

  89. K.-H. Hofmann and S. A. Morris, The Structure of Compact Groups, Walter de Gruyter, Berlin (1998).

    MATH  Google Scholar 

  90. K.-H. Hofmann and W. A. F. Ruppert, Lie Groups and Subsemigroups with Surjective Exponential Function, Mem. Amer. Math. Soc., Vol. 618, Amer. Math. Soc. (1997).

  91. E. Hotzel, “Right projective semigroups with 0,” J. Pure Appl. Algebra, 170, No. 1, 35–66 (2002).

    MATH  MathSciNet  Google Scholar 

  92. R. A. J. Howey, “Approximately multiplicative functionals on algebras of smooth functions,” J. London Math. Soc. (2), 68, No. 3, 739–752 (2003).

    MATH  MathSciNet  Google Scholar 

  93. D. H. Hyers, “On the stability of the linear functional equation,” Proc. Natl. Acad. Sci. USA, 27, No. 2, 222–224 (1941).

    MathSciNet  Google Scholar 

  94. D. H. Hyers and T. M. Rassias, “Approximate homomorphisms,” Aequationes Math., 44, No. 2–3, 125–153 (1992).

    MATH  MathSciNet  Google Scholar 

  95. D. H. Hyers and S. M. Ulam, “On approximate isometry,” Bull. Amer. Math. Soc., 51, 288–292 (1945).

    MATH  MathSciNet  Google Scholar 

  96. K. Iwasawa, “On some types of topological groups,” Ann. Math., 50, No. 2, 507–558 (1949).

    MathSciNet  Google Scholar 

  97. K. Jarosz, Perturbations of Banach Algebras, Lect. Notes Math., Vol. 1120, Springer, Berlin (1985).

    MATH  Google Scholar 

  98. K. Jarosz, “Small isomorphisms between operator algebras,” Proc. Edinburgh Math. Soc. (2), 28, No. 2, 121–131 (1985).

    MATH  MathSciNet  Google Scholar 

  99. K. Jarosz, “Perturbations of function algebras,” in: Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst., Castelvecchio–Pascoli/Italy, 1986, NATO ASI Ser., Ser. C, Math. Phys. Sci., Vol. 247, Kluwer Academic, Dordrecht (1988), pp. 557–563.

    Google Scholar 

  100. K. Jarosz, “Automatic continuity of separating linear isomorphisms,” Can. Math. Bull., 33, No. 2, pp. 139–144 (1990).

    MATH  MathSciNet  Google Scholar 

  101. K. Jarosz, “Small perturbations of algebras of analytic functions on polydiscs,” in: Function Spaces, Proc. Conf., Edwardsville (USA) 1990, Lect. Notes Pure Appl. Math., Vol. 136, Marcel Dekker, New York (1992), pp. 223–240.

    Google Scholar 

  102. K. Jarosz, “Almost multiplicative functionals,” Studia Math., 124, No. 1, 37–58 (1997).

    MATH  MathSciNet  Google Scholar 

  103. K. Jarosz, “When is a linear functional multiplicative?” in: Function Spaces, Proc. 3rd Conf., Edwardsville (USA), May 19–23, 1998, Contemp. Math., Vol. 232, Amer. Math. Soc., Providence (1999), pp. 201–210.

    Google Scholar 

  104. B. E. Johnson, “Approximate diagonals and cohomology of certain annihilator Banach algebras,” Amer. J. Math., 94, 685–698 (1972).

    MATH  MathSciNet  Google Scholar 

  105. B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., Vol. 127, Amer. Math. Soc., Providence (1972).

    Google Scholar 

  106. B. E. Johnson, “Perturbations of Banach algebras,” Proc. London Math. Soc. (3), 34, No. 3, 439–458 (1977).

    MATH  MathSciNet  Google Scholar 

  107. B. E. Johnson, “Approximately multiplicative functionals,” J. London Math. Soc. (2), 34, No. 3, 489–510 (1986).

    MATH  MathSciNet  Google Scholar 

  108. B. E. Johnson, “Continuity of generalized homomorphisms,” Bull. London Math. Soc., 19, No. 1, 67–71 (1987).

    MATH  MathSciNet  Google Scholar 

  109. B. E. Johnson, “Approximately multiplicative maps between Banach algebras,” J. London Math. Soc. (2), 37, No. 2, 294–316 (1988).

    MATH  MathSciNet  Google Scholar 

  110. B. E. Johnson, “Derivations from L 1(G) into L 1(G) and L (G),” in: Harmonic Analysis, Proc. Int. Symp., Luxembourg, 1987, Lect. Notes Math., Vol. 1359, Springer, Berlin (1988), pp. 191–198.

    Google Scholar 

  111. B. E. Johnson, “Perturbations of multiplication and homomorphisms,” in: Deformation Theory of Algebras and Structures and Applications, NATO Adv. Study Inst., Castelvecchio–Pascoli/Italy, 1986, NATO ASI Ser., Ser. C, Math. Phys. Sci., Vol. 247, Kluwer Academic, Dordrecht (1988), pp. 565–579.

    Google Scholar 

  112. B. E. Johnson, “Near inclusions for subhomogeneous C* algebras,” Proc. London Math. Soc. (3), 68, No. 2, 399–422 (1994).

    MATH  MathSciNet  Google Scholar 

  113. B. E. Johnson, “Non-amenability of the Fourier algebra of a compact group,” J. London Math. Soc. (2), 50, No. 2, 361–374 (1994).

    MATH  MathSciNet  Google Scholar 

  114. B. E. Johnson, “Symmetric amenability and the nonexistence of Lie and Jordan derivations,” Math. Proc. Cambridge Philos. Soc., 120, No. 3, 455–473 (1996).

    MATH  MathSciNet  Google Scholar 

  115. B. E. Johnson, “Local derivations on C*-algebras are derivations,” Trans. Amer. Math. Soc., 353, No. 1, 313–325 (2001).

    MATH  MathSciNet  Google Scholar 

  116. B. E. Johnson, “The derivation problem for group algebras of connected locally compact groups,” J. London Math. Soc. (2), 63, No. 2, 441–452 (2001).

    MATH  MathSciNet  Google Scholar 

  117. G. G. Kasparov, “The operator K-functor and extensions of C*-algebras,” Math. USSR Izv., 16, No. 3, 513–572 (1981).

    MATH  Google Scholar 

  118. D. Kazhdan, “On ε-representations,” Israel J. Math., 43, No. 4, 315–323 (1982).

    MATH  MathSciNet  Google Scholar 

  119. D. Kotschick, “What is… a quasi-morphism?” Notices Amer. Math. Soc., 51, No. 2, 208–209 (2004).

    MATH  MathSciNet  Google Scholar 

  120. R. A. Kunze and E. M. Stein, “Uniformly bounded representations and harmonic analysis on the 2 × 2 real unimodular group,” Amer. J. Math., 82, No. 1, 1–62 (1960).

    MATH  MathSciNet  Google Scholar 

  121. N. P. Landsman, “Strict deformation quantization of a particle in external gravitational and Yang–Mills fields,” J. Geom. Phys., 12, No. 2, 93–132 (1993).

    MATH  MathSciNet  Google Scholar 

  122. A. T.-M. Lau, “Amenability of semigroups,” in: The Analytical and Topological Theory of Semigroups, De Gruyter Exp. Math., Vol. 1, Walter de Gruyter, Berlin (1990), pp. 313–334.

    Google Scholar 

  123. J. W. Lawrence, “The stability of multiplicative semigroup homomorphisms to real normed algebras,” Aequationes Math., 28, No. 1-2, 94–101 (1985).

    MATH  MathSciNet  Google Scholar 

  124. H. Lin, “Almost multiplicative morphisms and some applications,” J. Operator Theory, 37, No. 1, 121–154 (1997).

    MATH  MathSciNet  Google Scholar 

  125. H. Lin, “When almost multiplicative morphisms are close to homomorphisms,” Trans. Amer. Math. Soc., 351, No. 12, 5027–5049 (1999).

    MATH  MathSciNet  Google Scholar 

  126. H. Lin and N. C. Phillips, “Almost multiplicative morphisms and the Cuntz algebra \(\mathcal{O}_2 \),” Internat. J. Math., 6, No. 4, 625–643 (1995).

    MATH  MathSciNet  Google Scholar 

  127. G. G. Lorentz, “A contribution to the theory of divergent sequences,” Acta Math., 80, 167–190 (1948).

    MathSciNet  Google Scholar 

  128. T. A. Loring, “Almost multiplicative maps between C* algebras,” in: S. Doplicher, ed., Operator Algebras and Quantum Field Theory, Proc. Conf. Dedicated to Daniel Kastler in Celebration of his 70th Birthday, Accademia Nazionale dei Lincei, Roma, Italy, July 1–6, 1996, Internat. Press, Cambridge, MA (1997), pp. 111–122.

    Google Scholar 

  129. T. A. Loring and G. K. Pedersen, “Corona extendibility and asymptotic multiplicativity,” K-Theory, 11, No. 1, 83–102 (1997).

    MATH  MathSciNet  Google Scholar 

  130. N. Louvet, “A propos d’un théorème de Vershik et Karpushev,” Enseign. Math. (2), 47, No. 3-4, 287–314 (2001).

    MATH  MathSciNet  Google Scholar 

  131. R. J. Loy, C. J. Read, V. Runde, and G. A. Willis, “Amenable and weakly amenable Banach algebras with compact multiplication,” J. Funct. Anal., 171, No. 1, 78–114 (2000).

    MATH  MathSciNet  Google Scholar 

  132. D. Ma, “Upper semicontinuity of isotropy and automorphism groups,” Math. Ann., 292, No. 3, 533–545 (1992).

    MATH  MathSciNet  Google Scholar 

  133. G. W. Mackey, “Borel structure in groups and their duals,” Trans. Amer. Math. Soc., 85, 134–165 (1957).

    MATH  MathSciNet  Google Scholar 

  134. J. F. Manning, “Geometry of pseudocharacters,” Geom. Topol., 9, 1147–1185 (2005).

    MATH  MathSciNet  Google Scholar 

  135. V. M. Manuilov, “Almost representations and asymptotic representations of discrete groups,” Math. USSR Izv., 63, No. 5, 995–1014 (1999).

    MATH  MathSciNet  Google Scholar 

  136. V. M. Manuilov, “On almost representations of the groups π ×  Z,” Proc. Steklov Inst. Math., No. 2 (225), 243–249 (1999).

  137. V. M. Manuilov, “Almost commutativity implies asymptotic commutativity,” in: A. Gheondea, ed., Operator Theoretical Methods, Proc. 17th Int. Conf. on Operator Theory, Timi¸soara, Romania, June 23–26, 1998, Theta Foundation, Bucharest (2000), pp. 257–268.

    Google Scholar 

  138. V. M. Manuilov, “On C*-algebras associated with asymptotic homomorphisms,” Math. Notes, 68, No. 3–4, 326–332 (2000).

    MathSciNet  Google Scholar 

  139. V. M. Manuilov and A. S. Mishchenko, “Asymptotic and Fredholm representations of discrete groups,” Sb. Math., 189, No. 10, 1485–1504 (1998).

    MATH  MathSciNet  Google Scholar 

  140. V. M. Manuilov and A. S. Mishchenko, “Almost, asymptotic and Fredholm representations of discrete groups,” Acta Appl. Math., 68, 159–210 (2001).

    MATH  MathSciNet  Google Scholar 

  141. V. M. Manuilov and K. Thomsen, “Quasidiagonal extensions and sequentially trivial asymptotic homomorphisms,” Adv. Math., 154, 258–279 (2000).

    MATH  MathSciNet  Google Scholar 

  142. V. M. Manuilov and K. Thomsen, “Asymptotically split extensions and E-theory,” St. Petersburg Math. J., 12, No. 5, 819–830 (2001).

    MATH  MathSciNet  Google Scholar 

  143. V. M. Manuilov and K. Thomsen, “The Connes–Higson map is an isomorphism,” Russ. Math. Surv., 56, No. 4, 756–757 (2001).

    MATH  MathSciNet  Google Scholar 

  144. V. M. Manuilov and K. Thomsen, “E-theory is a special case of KK-theory,” Proc. London Math. Soc. (3), 88, No. 2, 455–478 (2004).

    MATH  MathSciNet  Google Scholar 

  145. V. M. Manuilov and K. Thomsen, “Semi-invertible extensions and asymptotic homomorphisms,” K-Theory, 32, No. 2, 101–138 (2004).

    MATH  MathSciNet  Google Scholar 

  146. V. M. Manuilov and K. Thomsen, “The Connes–Higson construction is an isomorphism,” J. Funct. Anal., 213, No. 1, 154–175 (2004).

    MATH  MathSciNet  Google Scholar 

  147. V. M. Manuilov and K. Thomsen, “Translation invariant asymptotic homomorphisms and extensions of C*-algebras,” Funct. Anal. Appl., 39, No. 3, 236–239 (2005).

    MATH  MathSciNet  Google Scholar 

  148. D. McDuff, “A survey of the topological properties of symplectomorphism groups,” in: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lect. Note Ser., Vol. 308, Cambridge Univ. Press, Cambridge (2004), pp. 173–193.

    Google Scholar 

  149. M. Megrelishvili, “Generalized Heisenberg groups and Shtern’s question,” Georgian Math. J., 11, No. 4, 775–782 (2004).

    MATH  MathSciNet  Google Scholar 

  150. A. S. Mishchenko, “On Fredholm representations of discrete groups,” Funct. Anal. Appl., 9, No. 2, 121–125 (1975).

    MATH  MathSciNet  Google Scholar 

  151. A. S. Mishchenko and N. Mohammad, “Asymptotic representation of discrete groups,” in: Lie Groups and Lie Algebras, Math. Appl., Vol. 433, Kluwer Academic, Dordrecht (1998), pp. 299–312.

    Google Scholar 

  152. N. Monod, Continuous Bounded Cohomology of Locally Compact Groups, Lect. Notes Math., Vol. 1758, Springer, Berlin (2001).

    MATH  Google Scholar 

  153. N. Monod and B. Remy, Boundedly generated groups with pseudocharacter(s), arXiv:math.GR/0310065, pp. 21–23.

  154. D. Montgomery and L. Zippin, “A theorem on Lie groups,” Bull. Amer. Math. Soc., 48, 448–452 (1942).

    MATH  MathSciNet  Google Scholar 

  155. D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, New York (1955).

    MATH  Google Scholar 

  156. C. C. Moore, “Group extensions and cohomology for locally compact groups. III,” Trans. Amer. Math. Soc., 221, No. 1, 1–33 (1976).

    MATH  MathSciNet  Google Scholar 

  157. R. T. Moore, Measurable, Continuous and Smooth Vectors for Semi-Groups and Group Representations, Mem. Amer. Math. Soc., Vol. 78, Amer. Math. Soc., Providence (1968).

    Google Scholar 

  158. M. A. Naimark and A. I. Štern [Shtern], Theory of Group Representations, Springer, Berlin (1982).

    MATH  Google Scholar 

  159. K.-H. Neeb, “On a theorem of S. Banach,” J. Lie Theory, 7, No. 2, 293–300 (1997).

    MATH  MathSciNet  Google Scholar 

  160. K.-H. Neeb and D. Pickrell, “Supplements to the papers entitled: ‘On a theorem of S. Banach’ and ‘The separable representations of U(H)’,” J. Lie Theory, 10, No. 1, 107–109 (2000).

    MATH  MathSciNet  Google Scholar 

  161. J. von Neumann, “Approximative properties of matrices of high finite order,” Portugal. Math., 3, 1–62 (1942).

    MATH  Google Scholar 

  162. N. Nikolov and D. Segal, “Finite index subgroups in profinite groups,” C. R., Math., Acad. Sci. Paris, 337, No. 5, 303–308 (2003).

    MATH  MathSciNet  Google Scholar 

  163. N. Nikolov and D. Segal, “On finitely generated profinite groups. I: Strong completeness and uniform bounds,” Ann. Math., 165, 171–238 (2007).

    MATH  MathSciNet  Google Scholar 

  164. N. Nikolov and D. Segal, “On finitely generated profinite groups. II: Products in quasisimple groups,” Ann. Math., 165, 239–273 (2007).

    MathSciNet  Google Scholar 

  165. A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence (1988).

    MATH  Google Scholar 

  166. V. G. Pestov, “Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space,” Geom. Funct. Anal., 10, No. 5, 1171–1201 (2000).

    MATH  MathSciNet  Google Scholar 

  167. J.-C. Picaud, “Cohomologie bornée des surfaces et courants géodésiques,” Bull. Soc. Math. France, 125, No. 1, 115–142 (1997).

    MATH  MathSciNet  Google Scholar 

  168. D. R. Pitts, “Perturbations of certain reflexive algebras,” Pacific J. Math., 165, No. 1, 161–180 (1994).

    MATH  MathSciNet  Google Scholar 

  169. H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle,” J. de Mathématiques, 8, 251–296 (1882); H. Poincaré, Œuvres, I, Gauthier-Villars, Paris (1928).

    Google Scholar 

  170. L. Polterovich and Z. Rudnick, “Stable mixing for cat maps and quasi-morphisms of the modular group,” Ergodic Theory Dynam. Syst., 24, No. 2, 609–619 (2004).

    MATH  MathSciNet  Google Scholar 

  171. P. Py, Quasi-Morphismes et Invariant de Calabi, arXiv:math.SG/0506096 (2005).

  172. H. Rademacher, “Zur Theorie der Modulfunktionen,” J. Reine Angew. Math., 167, 312–336 (1932).

    Google Scholar 

  173. I. Raeburn and J. L. Taylor, “Hochschild cohomology and perturbations of Banach algebras,” J. Funct. Anal., 25, No. 3, 258–266 (1977).

    MATH  MathSciNet  Google Scholar 

  174. M. Rajagopalan, “Characters of locally compact Abelian groups,” Math. Z., 86, 268–272 (1964).

    MATH  MathSciNet  Google Scholar 

  175. C. J. Read, “Commutative, radical amenable Banach algebras,” Studia Math., 140, No. 3, 199–212 (2000).

    MATH  MathSciNet  Google Scholar 

  176. H. Rindler, “Unitary representations and compact groups,” Arch. Math. (Basel), 58, No. 5, 492–499 (1992).

    MATH  MathSciNet  Google Scholar 

  177. P. J. Sally, Jr., Analytic Continuation of the Irreducible Unitary Representations of the Universal Covering Group of SL(2, ℝ), Mem. Amer. Math. Soc., Vol. 69, Amer. Math. Soc., Providence (1967).

    Google Scholar 

  178. A. Sambusetti, “Minimal entropy and simplicial volume,” Manuscripta Math., 99, No. 4, 541–560 (1999).

    MATH  MathSciNet  Google Scholar 

  179. Z. Sasvari, Positive Definite and Definitizable Functions, Akademie, Berlin (1994).

    MATH  Google Scholar 

  180. H. H. Schaefer, Topological Vector Spaces, Collier–Macmillan, London (1966).

    MATH  Google Scholar 

  181. G. Segal, ‘Cohomology of topological groups,” in: Symposia Mathematica, Roma, Vol. IV, Teoria Numeri, Dic. 1968, e Algebra, Marzo 1969, Academic Press, London (1970), pp. 377–387.

    Google Scholar 

  182. P. Šemrl, “Hyers–Ulam stability of isometries on Banach spaces,” Aequationes Math., 58, 157–162 (1999).

    MATH  MathSciNet  Google Scholar 

  183. P. Šemrl, “Almost multiplicative functions and almost linear multiplicative functionals,” Aequationes Math., 63, 180–192 (2002).

    MATH  MathSciNet  Google Scholar 

  184. Y. Shalom, “Bounded generation and Kazhdan’s property (T),” Inst. Hautes Études Sci. Publ. Math. (1999), 90, 145–168 (2001).

    Google Scholar 

  185. E. T. Shavgulidze, “Some properties of quasi-invariant measures on groups of diffeomorphisms of the circle,” Russ. J. Math. Phys., 7, No. 4, 464–472 (2000).

    MATH  MathSciNet  Google Scholar 

  186. E. T. Shavgulidze, “Properties of the convolution operation for quasi-invariant measures on groups of diffeomorphisms of a circle,” Russ. J. Math. Phys., 8, No. 4, 495–498 (2001).

    MATH  MathSciNet  Google Scholar 

  187. A. I. Shtern, “The rigidity of positive characters,” Usp. Mat. Nauk, 35, No. 5, 218 (1980).

    MathSciNet  Google Scholar 

  188. A. I. Shtern, “On stability of homomorphisms in the group R*,” Moscow Univ. Math. Bull., 37, No. 3, 33–36 (1982).

    MATH  Google Scholar 

  189. A. I. Shtern, “The stability of representations and pseudocharacters,” in: Lomonosov Conference, Moscow State Univ., Moscow (1983).

    Google Scholar 

  190. A. I. Shtern, “A pseudocharacter that is determined by the Rademacher symbol,” Russ. Math. Surv., 45, No. 3, 224–226 (1990).

    MATH  MathSciNet  Google Scholar 

  191. A. I. Shtern, “Quasirepresentations and pseudorepresentations,” Funct. Anal. Appl., 25, No. 2, 140–143 (1991).

    MATH  MathSciNet  Google Scholar 

  192. A. I. Shtern, “On operators in Fréchet spaces that are similar to isometries,” Moscow Univ. Math. Bull., 46, No. 4, 47–48 (1991).

    MATH  MathSciNet  Google Scholar 

  193. A. I. Shtern, “Almost convergence and its applications to the Fourier–Stieltjes localization,” Russ. J. Math. Phys., 1, No. 1, 115–125 (1993).

    MATH  MathSciNet  Google Scholar 

  194. A. I. Shtern, “Characterizations of amenable groups in the class of connected locally compact groups,” Russ. Math. Surv., 49, No. 2, 174–175 (1994).

    MathSciNet  Google Scholar 

  195. A. I. Shtern, “Quasi-symmetry. I,” Russ. J. Math. Phys., 2, No. 3, 353–382 (1994).

    MATH  MathSciNet  Google Scholar 

  196. A. I. Shtern, Remarks on Pseudocharacters and the Real Continuous Bounded Cohomology of Connected Locally Compact Groups, Sfb 288 Preprint No. 289 (1997).

  197. A. I. Shtern, “Almost representations and quasi-symmetry,” in: B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, and A. B. Sossinsky, eds., Lie Groups and Lie Algebras. Their Representations, Generalizations and Applications, Math. Its Appl., Vol. 433, Kluwer Academic, Dordrecht (1998), pp. 337–358.

    Google Scholar 

  198. A. I. Shtern, “Quasi-symmetry and amenability,” in: Abstracts of Reports, ICM-98, Vol. II, Berlin (1998), p. 138.

  199. A. I. Shtern, “Triviality and continuity of pseudocharacters and pseudorepresentations,” Russ. J. Math. Phys., 5, No. 1, 135–138 (1998).

    MathSciNet  Google Scholar 

  200. A. I. Shtern, “Rigidity and approximation of quasi-representations of amenable groups,” Math. Notes, 65, No. 6, 760–769 (1999).

    MATH  MathSciNet  Google Scholar 

  201. A. I. Shtern, “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional,” Acta Appl. Math., 68, No. 1–3, 105–121 (2001).

    MATH  MathSciNet  Google Scholar 

  202. A. I. Shtern, “Bounded continuous real 2-cocycles on simply connected simple Lie groups and their applications,” Russ. J. Math. Phys., 8, No. 1, 122–133 (2001).

    MATH  MathSciNet  Google Scholar 

  203. A. I. Shtern, “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups,” Ann. Global Anal. Geom., 20, No. 3, 199–221 (2001).

    MATH  MathSciNet  Google Scholar 

  204. A. I. Shtern, “Structural properties and bounded real continuous 2-cohomology of locally compact groups,” Funct. Anal. Appl., 35, No. 4, 294–304 (2001).

    MATH  MathSciNet  Google Scholar 

  205. A. I. Shtern, “Continuity of Banach representations in terms of point variations,” Russ. J. Math. Phys., 9, No. 2, 250–252 (2002).

    MATH  MathSciNet  Google Scholar 

  206. A. I. Shtern, “Criteria for weak and strong continuity of representations of topological groups in Banach spaces,” Sb. Math., 193, No. 9, 1381–1396 (2002).

    MATH  MathSciNet  Google Scholar 

  207. A. I. Shtern, “Continuity criteria for finite-dimensional representations of compact connected groups,” Adv. Stud. Contemp. Math. (Kyungshang), 6, No. 2, 141–156 (2003).

    MATH  MathSciNet  Google Scholar 

  208. A. I. Shtern, “Continuity criteria for finite-dimensional representations of groups,” in: Functional Spaces. Differential Operators. Problems of Mathematical Education [in Russian], Nauka, Moscow (2003), pp. 122–124.

    Google Scholar 

  209. A. I. Shtern, “Deformation of irreducible unitary representations of a discrete series of Hermitian symmetric simple Lie groups in the class of pure pseudo-representations,” Math. Notes, 73, No. 3–4, 452–454 (2003).

    MATH  MathSciNet  Google Scholar 

  210. A. I. Shtern, “Values of invariant means, left averaging, and criteria for a locally compact group to be amenable as discrete group,” Russ. J. Math. Phys., 10, No. 2, 185–198 (2003).

    MATH  MathSciNet  Google Scholar 

  211. A. I. Shtern, “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups,” Adv. Stud. Contemp. Math. (Kyungshang), 8, No. 1, 13–22 (2004).

    MATH  MathSciNet  Google Scholar 

  212. A. I. Shtern, “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups,” Adv. Stud. Contemp. Math. (Kyungshang), 8, No. 1, 13–22 (2004).

    MATH  MathSciNet  Google Scholar 

  213. A. I. Shtern, “Criteria for the continuity of finite-dimensional representations of connected locally compact groups,” Sb. Math., 195, No. 9, 1377–1391 (2004).

    MATH  MathSciNet  Google Scholar 

  214. A. I. Shtern, “Deformations of irreducible unitary representations of a discrete series of Hermitian symmetric simple Lie groups in the class of pure pseudo-representations,” J. Math. Sci., 123, No. 4, 4324–4339 (2004).

    MATH  MathSciNet  Google Scholar 

  215. A. I. Shtern, “Projective irreducible unitary representations of Hermitian symmetric simple Lie groups are generated by pure pseudorepresentations,” Adv. Stud. Contemp. Math. (Kyungshang), 9, No. 1, 1–6 (2004).

    MATH  MathSciNet  Google Scholar 

  216. A. I. Shtern, “Almost periodic functions and representations in locally convex spaces,” Russ. Math. Surv., 60, No. 3, 489–557 (2005).

    MATH  MathSciNet  Google Scholar 

  217. A. I. Shtern, “Projective representations and pure pseudorepresentations of Hermitian symmetric simple Lie groups,” Math. Notes, 78, No. 1-2, 128–133 (2005).

    MATH  MathSciNet  Google Scholar 

  218. A. I. Shtern, “Van der Waerden continuity theorem for arbitrary semisimple Lie groups,” Russ. J. Math. Phys., 13, No. 2, 210–223 (2006).

    MATH  MathSciNet  Google Scholar 

  219. A. I. Shtern, “Van der Waerden continuity theorem for the Poincaré group and for some other group extensions,” Adv. Theor. Appl. Math., 1, No. 1, 79–90 (2006).

    MATH  MathSciNet  Google Scholar 

  220. A. I. Shtern, “Van der Waerden’s continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko’s conjecture,” Adv. Stud. Contemp. Math. (Kyungshang), 13, No. 2, 143–158 (2006).

  221. A. I. Shtern, “Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces,” Sb. Math., 197, No. 3, 453–473 (2006).

    MATH  MathSciNet  Google Scholar 

  222. A. I. Shtern, “Automatic continuity of pseudocharacters on Hermitian symmetric semisimple Lie groups,” Adv. Stud. Contemp. Math. (Kyungshang), 12, No. 1, 1–8 (2007).

  223. A. I. Shtern, “Kazhdan–Mil’man problem for semisimple compact Lie groups,” Russ. Math. Surv., 62, No. 1, 123–190 (2007).

    MathSciNet  Google Scholar 

  224. A. I. Shtern, “Stability of the van der Waerden theorem on the continuity of homomorphisms of compact semisimple Lie groups,” Appl. Math. Comput., 187, No. 1, 455–465 (2007).

    MATH  MathSciNet  Google Scholar 

  225. A. I. Shtern, “A version of the van der Waerden theorem and the proof of the Mishchenko conjecture for homomorphisms of locally compact groups” (to appear).

  226. H. Shulman and D. Tischler, “Leaf invariants for foliations and the van Est isomorphism,” J. Differential Geom., 11, 535–546 (1976).

    MATH  MathSciNet  Google Scholar 

  227. S. J. Sidney, “Are all uniform algebras AMNM?” Bull. London Math. Soc., 29, No. 3, 327–330 (1997).

    MathSciNet  Google Scholar 

  228. A. M. Sinclair and R. R. Smith, Hochschild Cohomology of von Neumann Algebras, London Math. Soc. Lect. Note Ser., Vol. 203, Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  229. N. Spronk, “Operator weak amenability of the Fourier algebra,” Proc. Amer. Math. Soc., 130, No. 12, 3609–3617 (2002).

    MATH  MathSciNet  Google Scholar 

  230. M. Stroppel, “Lie theory for non-Lie groups,” J. Lie Theory, 4, No. 2, 257–284 (1994).

    MATH  MathSciNet  Google Scholar 

  231. M. Takesaki, Theory of Operator Algebras. I, Springer, New York (1979).

    MATH  Google Scholar 

  232. S. Teleman, “Sur la réprésentation lineaire des groupes topologiques,” Ann. Sci. École Norm. Sup. (3), 74, 319–339 (1957).

    MATH  MathSciNet  Google Scholar 

  233. K. Thomsen, “Nonstable K-theory for operator algebras,” Internat. J. Math., 4, No. 3, 245–267 (1991).

    MATH  MathSciNet  Google Scholar 

  234. K. Thomsen, “Asymptotic homomorphisms and equivariant KK-theory,” J. Funct. Anal., 163, No. 2, 324–343 (1999).

    MATH  MathSciNet  Google Scholar 

  235. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York (1960).

    MATH  Google Scholar 

  236. V. S. Varadarajan, Lie groups, Lie Algebras, and Their Representations, Prentice Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  237. A. M. Vershik, “Commentaries to the Russian translation,” in: J. von Neumann, Selected Works on Functional Analysis, Vol. 1 [in Russian], Nauka, Moscow (1987), pp. 372–374.

    Google Scholar 

  238. A. M. Vershik and S. I. Karpushev, “Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions,” Math. USSR Sb., 47, No. 2, 513–526 (1984).

    MATH  Google Scholar 

  239. B. L. van der Waerden, “Stetigkeitssätze für halbeinfache Liesche Gruppen,” Math. Z., 36, 780–786 (1933).

    MATH  MathSciNet  Google Scholar 

  240. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Vols. I, II, Springer, New York (1972).

    Google Scholar 

  241. M. C. White, “Characters on weighted amenable groups,” Bull. London Math. Soc., 23, No. 4, 375–380 (1991).

    MATH  MathSciNet  Google Scholar 

  242. G. A. Willis, “The continuity of derivations from group algebras: Factorizable and connected groups,” J. Aust. Math. Soc. Ser. A, 52, 185–204 (1992).

    MATH  MathSciNet  Google Scholar 

  243. G. V. Wood, “Small isomorphisms between group algebras,” Glasgow Math. J., 33, No. 1, 21–28 (1991).

    MATH  MathSciNet  Google Scholar 

  244. G. Yu, “The Novikov conjecture for groups with finite asymptotic dimension,” Ann. Math. (2), 147, No. 2, 325–355 (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shtern.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 7, pp. 85–225, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtern, A.I. Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko’s conjecture. J Math Sci 159, 653–751 (2009). https://doi.org/10.1007/s10958-009-9466-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9466-3

Keywords

Navigation