Skip to main content
Log in

On the spectral estimates for the Schrödinger operator on ℤd, d ≽ 3

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

For the discrete Schrödinger operator we obtain sharp estimates for the number of negative eigenvalues. Bibliography: 19 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rozenblum and M. Solomyak, “Counting Schrödinger boundstates: semiclassics and beyond,” In: Sobolev Spaces in Mathematics. II. Applications in Analysis and Partial Differential Equations, International Mathematical Series 9, Springer and Tamara Rozhkovskaya Publisher (2009), pp. 329–354.

  2. M. Sh. Birman and M. Solomyak, “Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory” [in Russian], In: Tenth Math. School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1974), pp. 5–189; English transl.: Am. Math. Soc. Transl. (2) 114 (1980).

  3. M. Sh. Birman and M. Solomyak, “Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations,” Adv. Soviet Math. 7, 1–55 (1991).

    MathSciNet  Google Scholar 

  4. M. Sh. Birman and M. Solomyak, “Schrödinger operator. Estimates for number of bound states as function-theoretical problem,” In: Spectral Theory of Operators (Novgorod, 1989), Am. Math. Soc. Transl. Ser. 2, 150, Am. Math. Soc., Providence, RI (1992), pp. 1–54.

    Google Scholar 

  5. D. Levin and M. Solomyak, “Rozenblum–Lieb–Cwikel inequality for Markov generators,” J. Anal. Math. 71, 173–193 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Sh. Birman and M. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publishing Co., Dordrecht (1987). We do not refer to the original Russian edition since in most cases we need the material added to the English translation.

    Google Scholar 

  7. N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge Univ. Press, Cambridge (1992).

    Google Scholar 

  8. G. Rozenblum and M. Solomyak, “CLR-estimate for the generators of positivity preserving and positively dominated semigroups” [in Russian], Algebra Anal 9, No. 6, 214–236 (1997); English transl.: St. Petersburg Math. J. 9, No. 6, 1195–1211 (

    Google Scholar 

  9. V. Maz’ya, Sobolev Spaces [in Russian], Leningrad. State Univ., Leningrad (1985); English transl.: Springer-Verlag, Berlin (1985).

    Google Scholar 

  10. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Space [in Russian], Nauka, Moscow (1965); English transl.: Am. Math. Soc., Providence (1969).

    Google Scholar 

  11. R. J. Duffin, “Discrete potential theory,” Duke Math. J. 20, (1953), 233–251.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. A. Prigorskii, “On some classes of bases in Hilbert space” [in Russian], Uspehi Mat. Nauk 20, No. 5 (125), 231–236 (1965).

    MathSciNet  Google Scholar 

  13. N. I. Karachalios, “The number of bound states for a discrete Schrödinger operator on ℤN, N ≽ 1, lattices” J. Phys. A 41, 455201 (2008).

    Article  Google Scholar 

  14. D. Hundertmark and B. Simon, “Lieb–Thirring inequalities for Jacobi matrices,” J. Approx. Theory 118, No. 1, 106–130 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Molchanov and B. Vainberg, “ Spectrum of multidimensional Schrödinger operators with sparse potentials,” In: Analytical and Computational Methods in Scattering and Applied Mathematics (Newark, DE, 1998), Chapman and Hall/CRC Res. Notes Math. 417, Boca Raton, FL (2000), pp. 231–254.

    Google Scholar 

  16. S. Molchanov and B. Vainberg, “Scattering on the system of the sparse bumps: multidimensional case,” Appl. Anal. 71, No. 1–4, 167–185 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Pearson, “Singular continuous measures in scattering theory,” Commun. Math. Phys. 60, 13–36 (1976).

    Article  MathSciNet  Google Scholar 

  18. J. S. Geronimo, “An upper bound on the number of eigenvalues of an infinite-dimensional Jacobi matrix,” J. Math. Phys. 23, no. 6, 917–921 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. S. Geronimo, “On the spectra of infinite-dimensional Jacobi matrices,” J. Approx. Theory 53, No. 3, 251–265 (1988).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori Rozenblum.

Additional information

To Nina N. Uraltseva, with admiration

Translated from Problemy Matematicheskogo Analiza, 41, May 2009, pp. 107–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenblum, G., Solomyak, M. On the spectral estimates for the Schrödinger operator on ℤd, d ≽ 3. J Math Sci 159, 241–263 (2009). https://doi.org/10.1007/s10958-009-9436-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9436-9

Keywords

Navigation