Skip to main content
Log in

Asymptotics at infinity of solutions of equations close to Hamiltonian equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A nonlinear non-autonomous system of two ordinary differential equations is considered. It is assumed that the equations corresponding to the principal part in the asymptotics at infinity with respect to the independent variable are integrable and written in the action-angle variables. In the case where the lower terms in the equation periodically depend on the angle, the asymptotic expansion at infinity of the two-parametric family of solutions is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in Nonlinear Oscillation Theory [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  2. P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations differéntielles du second ordre,” Ann. Sci. Ec. Norm. Super., 30, 265–375 (1913); 31, 99–159 (1914).

    MathSciNet  Google Scholar 

  3. A. D. Bryuno, Power Geometry in Algebraic and Differential Equations [in Russian], Nauka, Moscow (1998).

    MATH  Google Scholar 

  4. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1983).

    MATH  Google Scholar 

  5. M. V. Fedoryuk, “WKB method for a second-order nonlinear equation,” Zh. Vychisl. Mat. Mat. Fiz., 26, No. 2, 196–210 (1986).

    MathSciNet  Google Scholar 

  6. A. P. Itin, A. I. Neishtadt, and A. A. Vasiliev, “Capture into resonance in dynamics of a charged particle in a magnetic field and an electrostatic wave,” Physica D., 141, 281–296 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. P. Its, A. A, Kapaev, V. Yu. Novokshenov, and A. S. Fokas, Painlevé Transcendents. Riemann Problem Method, NITs “Regular and Chaotic Dynamics,” (2005).

  8. N. Joshi, Asymptotic Studies of the Painlevé Equations. The Painlevé Property. One Century Later. CRM Series in Math. Phys., Springer, New York (1999), pp. 181–228.

    Google Scholar 

  9. L. A. Kalyakin, “Asymptotics of solutions of the principal resonance equations at infinity,” Dokl. Ross. Akad. Nauk, 388, No. 3, 305–308 (2003).

    MATH  MathSciNet  Google Scholar 

  10. L. A. Kalyakin, “Asimptotics of solutions of the principal resonance equations, Teor. Mat. Fiz., 137, No. 1, 142–152 (2003).

    MathSciNet  Google Scholar 

  11. L. A. Kalyakin, “Perturbation of a degenerate plane wave in the Navier-Stokes system of equations, ” Dokl. Ross. Akad. Nauk, 360, No. 3, 328–330 (1998).

    MATH  MathSciNet  Google Scholar 

  12. L. A. Kalyakin, “Justification of asymptotic expansions for the principal resonance equations,” Proc. Steklov Inst. Math., Suppl. 1, S108–S122 (2003).

  13. L. A. Kalyakin, “Intermediate asymptotics for solutions of the degenerate principal resonance,” Zh. Vychisl. Mat. Mat. Fiz., 46, No. 1, 196–210 (2006).

    MathSciNet  Google Scholar 

  14. V. V. Kozlov and S. D. Furta Asymptotics of Solutions of Strongly Nonlinear Systems of Differential Equations [in Russian], MGU, Moscow (1996).

    Google Scholar 

  15. G. E. Kuzmak, “Asymptotic solutions of nonlinear differential equations with variable coefficients, ” Prikl. Mat. Mekh., 23, No. 3, 519–526 (1951).

    Google Scholar 

  16. L. D. Kudryavtsev, “Asymptotics of solutions of differential equations near singular points,” Trudy Mat. Inst. Ross. Akad. Nauk, 232, 194–217 (2001).

    MathSciNet  Google Scholar 

  17. A. I. Neishtadt, “On separation of motions in systems with raplidly rotating phase,” Prikl. Mat. Mekh., 48, No. 2, 197–204 (1984).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kalyakin.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 53, Suzdal Conference-2006, Part 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyakin, L.A. Asymptotics at infinity of solutions of equations close to Hamiltonian equations. J Math Sci 157, 526–542 (2009). https://doi.org/10.1007/s10958-009-9332-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9332-3

Keywords

Navigation