Skip to main content
Log in

Dynamical two-dimensional models of solid-fluid interaction

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The present paper is devoted to the construction and investigation of two-dimensional hierarchical models for solid-fluid interaction. Applying the variational approach, the three-dimensional initial-boundary value problem is reduced to a sequence of two-dimensional problems and the existence and uniqueness of their solutions in suitable functional spaces is proved. The convergence of the sequence of vector-functions of three space variables to the solution of the original problem is proved and under additional regularity conditions the rate of approximation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York (1975).

    MATH  Google Scholar 

  2. C. Amrouche and V. Girault, “Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,” Czech. Math. J., 44, 109–140 (1994).

    MATH  MathSciNet  Google Scholar 

  3. M. Avalishvili, “On a dimensional reduction method in the theory of elasticity,” Repts. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., 14, No. 3, 16–19 (1999).

    MathSciNet  Google Scholar 

  4. M. Avalishvili, “Investigation of a mathematical model of an elastic bar with variable crosssection,” Bull. Georgian Acad. Sci., 166, No. 1, 37–40 (2002).

    MATH  MathSciNet  Google Scholar 

  5. M. Avalishvili and D. Gordeziani, “Investigation of two-dimensional models of an elastic prismatic shell,” Georgian Math. J., 10, No. 1, 17–36 (2003).

    MATH  MathSciNet  Google Scholar 

  6. I. Babuška and L. Li, “Hierarchic modelling of plates,” Comput. Struct., 40, 419–430 (1991).

    Article  Google Scholar 

  7. J. Bielak and R. MacCamy, “Symmetric finite element and boundary integral coupling methods for fluid-solid interaction,” Quart. Appl. Math., 49, 107–119 (1991).

    MATH  MathSciNet  Google Scholar 

  8. W. Borchers and H. Sohr, “On the equations rot v = g and div u = f with zero boundary conditions,” Hokkaido Math. J., 19, 67–87 (1990).

    MATH  MathSciNet  Google Scholar 

  9. P. G. Ciarlet, Mathematical Elasticity. Vol. III. Theory of Shells, North-Holland, Amsterdam (1999).

    Google Scholar 

  10. M. Dauge, E. Faou, and Z. Yosibash, “Plates and shells: Asymptotic expansions and hierarchical models,” Encycl. Comput. Mech., 1, Chap. 8, 199–236 (2004).

    Google Scholar 

  11. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 8. Evolution: Semi-Groupe, Variationnel, Masson, Paris (1988).

    Google Scholar 

  12. G. Everstine and M. Au-Yang, Advances in Fluid-Structure Interaction, Amer. Soc. Math. Eng., New York (1984).

    Google Scholar 

  13. D. G. Gordeziani, “On the solvability of some boundary value problems for a variant of the theory of thin shells,” Dokl. Akad. Nauk SSSR, 215, No. 6, 1289–1292 (1974).

    MathSciNet  Google Scholar 

  14. D. G. Gordeziani, “On the exactness of one variant of the theory of thin shells,” Dokl. Akad. Nauk SSSR, 216, No. 4, 751–754 (1974).

    MathSciNet  Google Scholar 

  15. V. Guliaev, V. Baganov, and P. Lizunov, Nonclassical Theory of Shells [in Russian], Vischa Shkola, Lviv (1978).

    Google Scholar 

  16. P. Hartman, Ordinary Differential Equations, John Wiley, New York (1964).

    MATH  Google Scholar 

  17. G. V. Jaiani, “On a mathematical model of bars with variable rectangular cross-sections,” Z. Angew. Math. Mech., 81, No. 3, 147–173 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Jensen, “Adaptive dimensional reduction and divergence stability,” Math. Model., 8, No. 9, 44–52 (1996).

    MATH  Google Scholar 

  19. J.-L. Lions and E. Magenes, “Problèmes aux limites non homogènes et applications,” in: Travaux et Recherches Mathématiques, No. 17, Dunod, Paris (1968).

    Google Scholar 

  20. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  21. T. Meunargia, “On two-dimensional equations of the linear theory of non-shallow shells,” Proc. I. Vekua Inst. Appl. Math., 38, 5–43 (1990).

    Google Scholar 

  22. E. Sanchez-Palencia, Non-Nomogeneous Media and Vibration Theory, Springer-Verlag, New York (1980).

    Google Scholar 

  23. C. Schwab, “A posteriori modelling error estimation for hierarchic plate models,” Numer. Math., 74, 221–259 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  24. I. N. Vekua, “On a way of calculating prismatic shells,” Proc. A. Razmadze Inst. Math. Georgian Acad. Sci., 21, 191–259 (1955).

    MATH  MathSciNet  Google Scholar 

  25. I. N. Vekua, Shell Theory: General Methods of Construction, Pitman Adv. Publ., Boston (1985).

    MATH  Google Scholar 

  26. M. Vogelius, and I. Babuška, “On a dimensional reduction method,” Math. Compt., 37, 31–68 (1981).

    Article  MATH  Google Scholar 

  27. H. Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton (1957).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gordeziani.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 51, Differential Equations and Their Applications, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeziani, D., Avalishili, M. & Avalishili, G. Dynamical two-dimensional models of solid-fluid interaction. J Math Sci 157, 16–42 (2009). https://doi.org/10.1007/s10958-009-9304-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9304-7

Keywords

Navigation