Skip to main content
Log in

Geometry of homogeneous Riemannian manifolds

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. U. Abresh and W. T. Meyer, “Injectivity radius estimates and sphere theorems,” in: Comparison Geometry (K. Grove et al., eds.), Cambridge (1997), pp. 1–47.

  2. M. A. Akivis and V. V. Goldberg, “On geometry of hypersurfaces of a pseudoconformal space of Lorentzian signature,” J. Geom. Phys., 26, 112–126 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. V. Aleekseevsky, “Conjugacy of polar decompositions of Lie groups,” Mat. Sb., 84, 14–26 (1971).

    MathSciNet  Google Scholar 

  4. D. V. Aleekseevsky, “Classification of quaternion spaces with transitive solvable motion group,” Izv. Akad. Nauk SSSR, Ser. Mat., 39, No. 2, 315–362 (1975).

    MathSciNet  Google Scholar 

  5. D. V. Aleekseevsky, “Homogeneous Riemannian spaces of negative curvature,” Mat. Sb., 96, 93–117 (1975).

    MathSciNet  Google Scholar 

  6. D. V. Alekseevsky, “Homogeneous Einstein metrics,” in: Differential Geometry and Its Application. Proc. of Brno Conf., Univ. of J. E. Purkyne (1987), pp. 1–12.

  7. D. Alekseevsky and A. Arvanitoyeorgos, “Metrics with homogeneous geodesics on flag manifolds,” Commun. Math. Univ. Carol., 43, No. 2, pp. 189–199.

  8. D. Alekseevsky, I. Dotti, and S. Ferraris, “Homogeneous Ricci positive 5-manifolds,” Pac. J. Math., 175, 1–12 (1996).

    MathSciNet  Google Scholar 

  9. D. Alekseevsky and B. N. Kimelfeld, “Structure of homogeneous Riemannian spaces with zero Ricci curvature,” Funct. Anal. Appl., 9, 27–102 (1975).

    Article  Google Scholar 

  10. D. V. Aleekseevsky and B. Kimelfeld, “Classification of homogeneous conformally flat Riemannian manifolds,” Mat. Zametki, 24 (1978).

  11. S. Aloff and N. Wallach, “An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures,” Bull. Amer. Math. Soc., 81, 93–97 (1975).

    MATH  MathSciNet  Google Scholar 

  12. W. Ambrose and I. M. Singer, “On homogeneous Riemannian manifolds,” Duke Math. J., 25, 647–669 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. N. Apanasov, “Kobayashi conformal metric on manifolds Chern-Simons and η-invariants,” Int. J. Math., 2, No. 4, 361–382 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Arvanitoyergos, “New invariant Einstein metrics on generalized flag manifolds,” Trans. Amer. Math. Soc., 337, 981–995 (1993).

    Article  MathSciNet  Google Scholar 

  15. A. Arvanitoyergos, “SO(n)-invariant Einsten metrics on Stiefel manifolds,” in: Proc. Conf. Diff. Geom. Appl. Aug.-Sept. 1995, Brno (1995), pp. 1–5.

  16. A. Arvanitoyergos, “Einstein equations for invariant metrics on generalized flag manifolds and inner automorphisms,” Balkan J. Geom. Appl., 1, 17–22 (1996).

    Google Scholar 

  17. R. Azencott and E. Wilson, “Homogeneous manifolds with negative curvature, I,” Trans. Amer. Math. Soc., 215, 323–362 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Azencott and E. Wilson, “Homogeneous manifolds with negative curvature, II,” Mem. Amer. Math. Soc., 178 (1976)

  19. A. Back and W. Y. Hsiang, “Equivariant geometry and Kervaire spheres,” Trans. Amer. Math. Soc., 304, 207–227 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  20. Ya. V. Bazaikin, “On a certain family of closed 13-dimensional Riemannian manifolds of positive curvature,” Sib. Mat. Zh., 37, 1068–1085 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Berger, “Les varietes riemanniennes homogenes normales a courbure strictement positive,” Ann. Sc. Norm. Sup. Pisa, 15, 179–246 (1961).

    MATH  Google Scholar 

  22. L. B. Bergery, “Les varietes riemanniens invariantes homogenes simplement connexes de dimension impaire a courbure strictement positive,” J. Math. Pur. Appl. IX. Ser., 55, No. 1, 47–68 (1976).

    MATH  Google Scholar 

  23. L. B. Bergery, “Sur la courbure des metrigues riemanniens invariantes des groupes de Lie et des espaces homogenes,” Ann. Sci. Ecole Norm. Super., 4, No. 4, 543–576 (1978).

    Google Scholar 

  24. L. B. Bergery, “Homogeneous Riemannian spaces of dimension 4,” in: Gèomè trie Riemannienne en dimension 4. Sèminaire Arthur Besse, Cedic, Paris (1981).

  25. V. N. Berestovskii, “Homogeneous Riemannian manifolds of positive Ricci curvature,” Mat. Zametki, 58, No. 3, 334–340 (1995).

    MathSciNet  Google Scholar 

  26. V. N. Berestovskii and D. E. Volper, “A class of U(n)-invariant Riemannian metrics on manifolds diffeomorphic to the odd-dimensional spheres,” Sib. Mat. Zh., 34, No. 4, 612–619 (1993).

    Article  MathSciNet  Google Scholar 

  27. J. Berndt, O. Kowalski, and L. Vanhecke, “Geodesics in weakly symmetric spaces,” Ann. Global Anal. Geom., 15, 153–156 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Besse, Einstein Manifolds, Vols. 1, 2 [Russian translation], Mir, Moscow (1990).

    MATH  Google Scholar 

  29. A. L. Besse, Manifolds All of Whose Geodesics are Closed [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  30. S. Bochner, “Vectors fields and Ricci curvature,” Bull. Ann. Math. Soc., 52, 776–797 (1946).

    MATH  MathSciNet  Google Scholar 

  31. A. Borel, “Some remarks about Lie groups transitive on spheres and tori,” Bull. Amer. Math. Soc., 55, 580–587 (1949).

    MATH  MathSciNet  Google Scholar 

  32. A. Borel, “Le plant projectif des octaves et les spheres comme espaces homogenes,” C. R. Acad. Sci. Paris, 230, 1378–1380 (1950).

    MATH  MathSciNet  Google Scholar 

  33. A. A. Borisenko, Intrinsic and Extrinsic Geometry of Multi-Dimensional Submanifolds [in Russian], Moscow (2003).

  34. A. A. Borisenko, “On cylindrical many-dimensional surfaces in the Lobachevskii space,” Ukr. Geom. Sb., 33, 18–27 (1990).

    MATH  MathSciNet  Google Scholar 

  35. A. A. Borisenko, “Extrinsic geometry of strongly parabolic many-dimensional submanifolds,” Usp. Mat. Nauk, 52, No. 6, 3–52 (1997).

    MathSciNet  Google Scholar 

  36. A. A. Borisenko, Exterior geometry of parabolic and saddle many-dimensional submanifolds,” Usp. Mat. Nauk, 53, No. 6, 3–52 (1998).

    MathSciNet  Google Scholar 

  37. J. P. Bourguignon and H. Karcher, “Curvature operators: Pinching estimates and geometric examples,” Ann. Sci. Ecole Norm. Super., 11, 71–92 (1978).

    MATH  MathSciNet  Google Scholar 

  38. C. Boyer, K. Galicki, and B. Mann, “The geometry and topology of 3-Sasakian manifolds,” J. Reine Angew. Math., 455, 183–220 (1994).

    MATH  MathSciNet  Google Scholar 

  39. C Böhm, Homogeneous Einstein metrics and simplicial complexes, Preprint (2003).

  40. C. Böhm, Non-existence of homogeneous Einstein metrics, Preprint (2003).

  41. C. Böhm and M. Kerr, Low-dimensional homogeneous Einstein manifolds, Preprint (2002).

  42. C. Böhm, M. Wang, and W. Ziller, “A variational approach for compact homogeneous Einstein manifolds” (in press).

  43. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London (1972).

    MATH  Google Scholar 

  44. É. Cartan, “Sur les domaines bornès homogènes de l’space de n variables complexes,” Abh. Math. Sem. Univ. Hamburg, 11, 116–162 (1935).

    MATH  Google Scholar 

  45. L. Castellani and L. J. Romans, “N = 3 and N = 1_supersymmetry in a new class of solutions for D = 11 supergravity,” Nucl. Phys. B, 241, 683–701 1984).

    Article  MathSciNet  Google Scholar 

  46. L. Castellani, R. D’Auria, and P. Fre, “SU(3)ΘSU(2)ÈU(1) for D = 11 supergravity,” Nucl. Phys. B, 239, 610–652 (1984).

    Article  MathSciNet  Google Scholar 

  47. L. Castellani, L. J. Romans, and N. P. Warner, “A classification of compactifying solutions for d = 11 supergravity,” Nucl. Phys. B, 241, 429–462 (1984).

    Article  MathSciNet  Google Scholar 

  48. I. Chavel, “Isotropic Jacobi fields and Jacobi’s equation on Riemannian homogeneous spaces,” Comment. Math. Helv., 42, 237–248 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  49. C. D. Collinson, “A comment on the integrability conditions of the conformal Killing equation,” Gen. Relativ. Gravit., 21, No. 9, 979–980 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  50. E. Cortés, “Alekseevskian spaces,” Differ. Geom. Appl., 6, 129–168 (1996).

    Article  MATH  Google Scholar 

  51. J. E. D’Atri and H. K. Nickerson, “Geodesic symmetrics in spaces with special curvature tensor,” J. Differ. Geom., 9, 251–262 (1974).

    MATH  MathSciNet  Google Scholar 

  52. J. E. D’Atri and W. Ziller, “Naturally reductive metrics and Einstein metrics on compact Lie groups,” Mem. Amer. Math. Soc., 18, No. 215, 1–72 (1979).

    MathSciNet  Google Scholar 

  53. R. D’Auria, P. Fre, and P. van Nieuwenhuisen, “N = 2 matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector,” Phys. Lett. B, 136, 347–353 (1984).

    Article  MathSciNet  Google Scholar 

  54. E. Deloff, Naturally reductive metrics and metrics with volume preserving geodesic symmetries on NC-algebras, Thesis, Rutgers, New Brunswick (1979).

  55. I. Dotti Miatello, “Ricci curvature of left-invariant metrics on solvable unimodular Lie groups,” Math. Z., 180, 257–263 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  56. I. Dotti Miatello, “Transitive group actions and Ricci curvature properties,” Michigan Math. J., 35, 427–434 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  57. M. J. Duff, B. E. W. Nilsson, and C. N. Pope, “Kaluza-Klein supergravity,” Phys. Rep., 130, 1–142 (1986).

    Article  MathSciNet  Google Scholar 

  58. Z. Dusek, “Structure of geodesics in a 13-dimensional group of Heisenberg type,” in: Proc. Coll. Differ. Geom. in Debrecen (2001), pp. 95–103.

  59. Z. Dusek, Explicit geodesic graphs on some H-type groups, Preprint.

  60. E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras, Mat. Sb., 30, No. 2, 349–462 (1952).

    MathSciNet  Google Scholar 

  61. E. B. Dynkin, “Maximal subgroups of the classical groups,” Tr. Mosk. Mat. Obshch., 1, 39–166 (1952).

    MathSciNet  MATH  Google Scholar 

  62. H. I. Eliasson, “Die Krummung des Raumes Sp(2)/ SU(2) von Berger,” Math. Ann., 164, 317–327 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  63. Y.-H. Eschenburg, “New examples of manifolds with strictly positive curvature,” Invent. Math., 66, 469–480 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  64. S. G. Gindikin, I. I. Pyatetskii-Shapiro, and E. B. Vinberg, “On classification and canonical realization of bounded homogeneous domains,” Tr. Mosk. Mat. Obshch., 12, 359–388 (1963).

    Google Scholar 

  65. S. G. Gindikin, I. I. Piatetskii-Shapiro, and E. B. Vinberg, “Homogeneous Kähler manifolds,” in: Homogeneous Bounded Domains (C.I.M.E., 3 Ciclo, Urbino, 1967), Edizioni Cremoneze, Roma (1968), pp. 3–87.

    Google Scholar 

  66. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  67. C. Gordon, “Homogeneous manifolds whose geodesics are orbits,” in: Topics in Geometry. In Memory of J. D’Atri, Birkhauser, Boston (1996), pp. 155–174.

    Google Scholar 

  68. C. S. Gordon and M. Kerr, “New homogeneous metrics of negative Ricci curvature,” Ann. Global Anal. Geom., 19, 1–27 (2001).

    Article  MathSciNet  Google Scholar 

  69. J. Heber, “Noncompact homogeneous Einstein spaces,” Invent. Math., 133, 279–352 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  70. E. Heintze, “The curvature of SU(5)/ Sp(2) × S 1,” Invent. Math., 13, 205–212 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  71. E. Heintze, “Riemannsche Solvmannigfaltigkeiten,” Geom. Dedic., 1, 141–147 (1973).

    MATH  MathSciNet  Google Scholar 

  72. E. Heintze, “On homogeneous manifolds of negative curvature,” Math. Ann., 211, 23–34 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  73. S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).

    MATH  Google Scholar 

  74. H.-M. Huang, “Some remarks on the pinching problems,” Bull. Inst. Math. Acad. Sin., 9, 321–340 (1981).

    MATH  Google Scholar 

  75. G. R. Jensen, “Homogeneous Einstein spaces of dimension 4,” J. Differ. Geom., 3, 309–349 (1969).

    MATH  Google Scholar 

  76. G. R. Jensen, “The scalar curvature of left-invariant Riemannian metrics,” Indiana Univ. Math. J., 20, 1125–1143 (1971).

    Article  MathSciNet  Google Scholar 

  77. G. R. Jensen, “Einstein metrics on principal fibre bundles,” J. Differ. Geom., 8, 599–614 (1973).

    MATH  Google Scholar 

  78. B. E. Kantor and S. A. Frangulov, “On isometric immersion of two-dimensional Riemannian manifolds in the pseudo-Euclidean space,” Mat. Zametki, 36, No. 3, 447–455 (1984).

    MathSciNet  Google Scholar 

  79. A. Kaplan, “On the geometry of groups of Heisenberg type,” Bull. London Math. Soc., 15, 35–42 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  80. M. Kerr, “Some new homogeneous Einstein metrics on symmetric spaces,” Trans. Amer. Math. Soc., 348, 153–171 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  81. M. Kerr, “New examples of homogeneous Einstein metrics,” Michigan J. Math., 45, 115–134 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  82. M. Kerr, A deformation of quaternionic hyperbolic space, Preprint (2002).

  83. M. Kimura, “Homogeneous Einstein metrics on certain Kähler C-spaces,” Adv. Stud. Pure Math., 18, 303–320 (1990).

    Google Scholar 

  84. S. Klaus, Einfach-zusammenhängenge Kompakte Homogene Räume bis zur Dimension Neun, Diplomarbeit am Fachbereich Matthematik, Johannes Gutenberg Universität (1988).

  85. W. Klingenberg, Lectures on Closed Geodesics [Russan translation], Mir, Moscow (1982).

    MATH  Google Scholar 

  86. B. N. Kimelfeld, “Homogeneous domains on the conformal sphere,” Mat. Zametki, 8, No. 3 (1970).

    Google Scholar 

  87. S. Kobayashi, “Topology of positively pinched Käler manifolds,” Tohoku Math. J., 15, 121–139 (1963).

    MATH  MathSciNet  Google Scholar 

  88. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2, Interscience Publ., New York (1963, 1969).

    MATH  Google Scholar 

  89. B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds,” Trans. Amer. Math. Soc., 80, 520–542 (1955).

    Article  MathSciNet  Google Scholar 

  90. B. Kostant, “On differential geometry and homogeneous spaces, II,” Proc. Natl. Acad. Sci., 42, 354–357 (1956).

    Article  MATH  Google Scholar 

  91. O. Kowalski, “Counter-example to the ’second Singer’s theorem,’” Ann. Global Anal. Geom., 8, No. 2, 211–214 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  92. O. Kowalski and S. Nikcević, “Eigenvalues of locally homogeneous riemannian 3-manifolds,” Geom. Dedic., 62, 65–72 (1996).

    Article  MATH  Google Scholar 

  93. O. Kowalski and S. Nikcevi’c, “On geodesic graphs of Riemannian g.o. spaces,” Arch. Math., 73, 223–234 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  94. O. Kowalski, S. Nikcević, and Z. Vlásek, “Homogeneous geodesics in homogeneous Riemannian manifolds—examples,” in: Geometry and Topology of Submanifolds, X, World Scientific Publ., River Edge, New Jersey (2000), pp. 104–112.

    Google Scholar 

  95. O. Kowalski and J. Szenthe, “On the existence of homogeneous geodesics in homogeneous Riemannian manifolds,” Geom. Dedic., 81, 209–214 (2000); correction: Geom. Dedic., 84, 331–332 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  96. O. Kowalski and L. Vanhecke, “Riemannian manifolds with homogeneous geodesics,” Boll. Unione Mat. Ital. VII. Ser. B, 5, No. 1, 189–246 (1991).

    MATH  MathSciNet  Google Scholar 

  97. O. Kowalski and Z. Vlásek, “Homogeneous Einstein metrics on Aloff-Wallach spaces,” Differ. Geom. Appl., 3, 157–167 (1993).

    Article  MATH  Google Scholar 

  98. M. Krämer, “Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen,” Commun. Alg., 3, 691–737 (1975).

    Article  MATH  Google Scholar 

  99. M. Kreck and S. Stolz, “A diffeomorphism classification on 7-dimensional Einstein manifolds with SU(3)Θ SU(2)Θ U(1) symmetry,” Ann. Math., 127, 373–388 (1988).

    Article  MathSciNet  Google Scholar 

  100. M. Kreck and S. Stolz, “Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature,” J. Differ. Geom., 33, 465–486 (1991).

    MathSciNet  MATH  Google Scholar 

  101. N. H. Kuiper, “On conformally-flat spaces in the large,” Ann. Math. (2), 50, 916–924 (1949).

    Article  MathSciNet  Google Scholar 

  102. N. H. Kuiper, “On compact conformally Euclidean spaces of dimension (2),” Ann. Math. (2), 52, 478–490 (1950).

    Article  MathSciNet  Google Scholar 

  103. E. Lacomba, “Mechanical systems with symmetry on homogeneous spaces,” Trans. Amer. Math. Soc., 185, 477–491 (1974).

    Article  MathSciNet  Google Scholar 

  104. G. Lastaria Federico and F. Tricerri, “Curvature-orbits and locally homogeneous Riemannian manifolds,” Ann. Mat. Pura Appl., IV. Ser., 165, 121–131 (1993).

    Article  MATH  Google Scholar 

  105. J. Lauret, “Ricci soliton homogeneous nilmanifolds,” Math. Ann., 319, 715–733 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  106. J. Lauret, “Standard Einstein solvmanifolds as critical points,” Quart. J. Math., 52, 463–470 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  107. J. Lauret, “Finding Einstein solvmanifolds by a variational method,” Math. Z., 241, 83–99 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  108. M. L. Leite and I. D. Miatello, “Metrics of negative Ricci curvature on SL(n, ℝ), n ≥ 3,” J. Differ. Geom., 17, 635–641 (1982).

    MATH  Google Scholar 

  109. A. M. Loshmankov, Yu. G. Nikonorov, and E. V. Firsov, “Invariant Einstein metrics on tri-locally symmetric spaces,” Mat. Tr., 6, No. 2, 80–101 (2003).

    MathSciNet  Google Scholar 

  110. O. V. Manturov, “Homogeneous nonsymmetric Riemannian spaces with irreducible rotation group,” Dokl. Akad. Nauk SSSR, 141, 792–795 (1961).

    MathSciNet  Google Scholar 

  111. O. V. Manturov, “Riemannian spaces with orthogonal and symplectic motion groups and with irreducible rotation group,” Dokl. Akad. Nauk SSSR, 141, 1034–1037 (1961).

    MathSciNet  Google Scholar 

  112. O. V. Manturov, “Homogeneous Riemannian manifolds with irreducible isotropy group,” Tr. Semin. Vekt. Tenzor. Anal., 13, 68–145 (1966).

    MathSciNet  Google Scholar 

  113. Y. McCleary and W. Ziller, “On the free loop space of homogeneous spaces,” Amer. J. Math., 109, 765–781 (1987); correction: Amer. J. Math., 113, 375-377 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  114. M. V. Meshcheryakov, “Several remarks on Hamiltonian flows on homogeneous spaces,” Usp. Mat. Nauk, 40, No. 3, 215–216 (1985).

    MathSciNet  Google Scholar 

  115. J. Milnor, “Curvature of left invariant metrics on Lie groups,” Adv. Math., 21, 293–329 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  116. D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943).

    Article  MathSciNet  Google Scholar 

  117. D. Montgomery and H. Samelson, “Groups transitive on the n-dimensional torus,” Bull. Amer. Math. Soc., 49, 455–456 (1943).

    MATH  MathSciNet  Google Scholar 

  118. S. B. Myers, “Riemannian manifolds with positive mean curvature,” Duke Math. J., 8, 401–404 (1941).

    Article  MATH  MathSciNet  Google Scholar 

  119. S. B. Myers and N. Steenrod, “The group of isometries of Riemannian manifolds,” Ann. Math., 40, 400–416 (1939).

    Article  MathSciNet  Google Scholar 

  120. K. Nakajima, “On j-algebras and homogeneous Kähler manifolds,” Hokkaido Math. J., 15, 1–20 (1986).

    MATH  MathSciNet  Google Scholar 

  121. E. V. Nikitenko and Yu. G. Nikonorov, Six-dimensional Einstein solvmanifolds, Preprint.

  122. I. G. Nikolaev, On the smoothness of the metric of spaces with curvature two-sided bounded in the A. D. Aleksandrov sense,” Sib. Mat. Zh., 24, No. 2, 114–132 (1983).

    MathSciNet  Google Scholar 

  123. Yu. G. Nikonorov, “Scalar curvature functional and homogeneous Einstein metrics on Lie groups,” Sib. Mat. Zh., 39, No. 3, 583–589 (1998).

    MATH  MathSciNet  Google Scholar 

  124. Yu. G. Nikonorov, “On a certain class of compact homogeneous Einstein manifolds,” Sib. Mat. Zh., 41, No. 1, 200–205 (2000).

    MATH  MathSciNet  Google Scholar 

  125. Yu. G. Nikonorov, “On the Ricci curvature of homogeneous metrics on noncompact homogeneous spaces,” Sib. Mat. Zh., 41, No. 2, 421–429 (2000).

    MATH  MathSciNet  Google Scholar 

  126. Yu. G. Nikonorov, “Compact seven-dimensional homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 372, No. 5, 589–592 (2000).

    MathSciNet  Google Scholar 

  127. Yu. G. Nikonorov, “Classification of invariant Einstein metrics on the Aloff-Wallach spaces,” in: Proc. Conf. “Geometry and Applications” Dedicated to the 70th Birthday of V. A. Toponogov, March 13–16, 2000 [in Russian], Inst. Math. Sib. Department Russ. Acad. Sci., Novosibirsk (2000), pp. 128–145.

    Google Scholar 

  128. Yu. G. Nikonorov, “New series of Einstein homogeneous metrics,” Differ. Geom. Appl., 12, 25–34 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  129. Yu. G. Nikonorov, “Invariant Einstein metrics on the Ledger-Obata spaces,” Algebra Analiz, 14, No. 3, 169–185 (2002).

    MATH  MathSciNet  Google Scholar 

  130. Yu. G. Nikonorov, “Algebraic structure of the standard homogeneous Einstein manifolds,” Mat. Tr., 3, No. 1, 119–143 (2002).

    MathSciNet  Google Scholar 

  131. Yu. G. Nikonorov, “Five-dimensional Einstein solvmanifolds,” in: Works on Geometry and Analysis [in Russian], Inst. Math. Sib. Department Russ. Acad. Sci., Novosibirsk (2003), pp. 343–367.

    Google Scholar 

  132. Yu. G. Nikonorov, “Compact homogeneous Einstein 7-manifolds,” Geom. Dedic. (to appear).

  133. Yu. G. Nikonorov, “Noncompact homogeneous Einstein 5-manifolds,” Geom. Dedic. (to appear).

  134. Yu. Nikonorov and E. Rodionov, “Standard homogeneous Einstein manifolds and Diophantine equations,” Arch. Math. (Brno), 32, 123–136 (1996).

    MATH  MathSciNet  Google Scholar 

  135. Yu. G. Nikonorov and E. D. Rodionov, “Compact six-dimensional homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 366, No. 5, 599–601 (1999).

    MATH  MathSciNet  Google Scholar 

  136. Yu. G. Nikonorov and E. D. Rodionov, “Compact homogeneous Einstein 6-manifolds,” Differ. Geom. Appl., 19, 369–378 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  137. Yu. G. Nikonorov, E. D. Rodionov, and V. V. Slavskii, “Geometry of homogeneous Riemannian manifolds,” in: Treatise on Geometry and Analysis [in Russian], Inst. Math. Sib. Department of Russ. Acad. Sci., Novosibirsk (2003), pp. 162–189.

    Google Scholar 

  138. L. A. Onishchik, “Inclusion relations between the transitive compact transformation groups,” Tr. Mosk. Mat. Obshch., 11, 199–242 (1962).

    MATH  Google Scholar 

  139. L. A. Onishchik, “Transitive compact transformation groups,” Mat. Sb., 60, 447–485 (1963).

    MathSciNet  Google Scholar 

  140. J. M. Overduin and C. S. Wesson, “Kaluza-Klein gravity,” Phys. Rep., 283, 303–378 (1997).

    Article  MathSciNet  Google Scholar 

  141. D. Page and C. Pope, “New squashed solutions of d = 11 supergravity,” Phys. Lett. B, 147, 55–60 (1984).

    Article  MathSciNet  Google Scholar 

  142. J. Park, “Einstein normal homogeneous Riemannian manifold,” Proc. Jpn. Acad., 72, 197–198 (1996).

    MATH  Google Scholar 

  143. J. Park and Y. Sakane, “Invariant Einstein metrics on certain homogeneous spaces,” Tokyo J. Math., 20, 51–61 (1997).

    Article  MathSciNet  Google Scholar 

  144. T. Puttmann, Optimal pinching constants of odd-dimensional homogeneous spaces, Ph.D. Thesis, Bochum Univ. (1997).

  145. I. I. Pyatetskii-Shapiro, “On the classification of bounded homogeneous domains in the n-dimensional complex space,” Dokl. Akad. Nauk SSSR, 141, 316–319 (1961).

    MathSciNet  Google Scholar 

  146. I. I. Pyatetskii-Shapiro, “Structure of j-algebras,” Izv. Akad. Nauk SSSR, Ser. Mat., 26, 453–484 (1966).

    Google Scholar 

  147. H. E. Rauch, “Geodesics and Jacobi equations on homogeneous riemannian manifolds,” in: Proc. United States-Japan Semin. Differ. Geom., Kyoto 1965, Kyoto Univ., Kyoto (1965), pp. 115–127.

    Google Scholar 

  148. S. K. Ravindra, “Curvature structures and conformal transformation,” J. Differ. Geom., 4, 425–451 (1969).

    Google Scholar 

  149. Yu. G. Reshetnyak, Stability theorems in geometry and analysis, Novosibirsk (1996).

  150. A. G. Reznikov, “Weak Blaschke conjecture for HP n,” Dokl. Akad. Nauk SSSR, 283, No. 2, 308–312 (1985).

    MathSciNet  Google Scholar 

  151. E. D. Rodionov, “Homogeneous Riemannian Z-manifolds,” Sib. Mat. Zh., 22, No. 2, 191–197 (1981).

    MATH  MathSciNet  Google Scholar 

  152. E. D. Rodionov, Structure of Homogeneous Riemannian Z-Manifolds, Dissertation [in Russian], Inst. Math. Sib. Department Russ. Acad. Sci., Novosibirsk (1982).

    Google Scholar 

  153. E. D. Rodionov, “Homogeneous Riemannian manifolds of rank 1,” Sib. Mat. Zh., 25, No. 4, 163–166 (1984).

    MATH  MathSciNet  Google Scholar 

  154. E. D. Rodionov, “Rank of a normal homogeneous space,” Sib. Mat. Zh., 28, No. 5, 154–159 (1987).

    MATH  MathSciNet  Google Scholar 

  155. E. D. Rodionov, “Geometry of homogeneous Riemannian manifolds,” Dokl. Akad. Nauk SSSR, 306, No. 5, 1049–1051 (1989).

    MathSciNet  Google Scholar 

  156. E. D. Rodionov, “Homogeneous Riemannian almost P-manifods,” Sib. Mat. Zh., 31, No. 5, 102–108 (1990).

    MathSciNet  Google Scholar 

  157. E. D. Rodionov, “Einstein metrics on even-dimensional homogeneous spaces admitting a homogeneous Riemannian metric of positive sectional curvature,” Sib. Mat. Zh., 32, No. 3, 126–131 (1991).

    MathSciNet  Google Scholar 

  158. E. D. Rodionov, “Einstein metrics on a class of 5-dimensional homogeneous spaces,” Commun. Math. Univ. Carolinae, 32, 89–393 (1991).

    Google Scholar 

  159. E. D. Rodionov, “On a new family of homogeneous Einstein manifolds,” Arch. Math. (Brno), 28, Nos. 3–4, 199–204 (1992).

    MATH  MathSciNet  Google Scholar 

  160. E. D. Rodionov, “Homogeneous Einstein metrics on one exceptional Berger space,” Sib. Mat. Zh., 33, No. 1, 208–211 (1992).

    MathSciNet  Google Scholar 

  161. E. D. Rodionov, “Simply connected compact standard homogeneous Einstein manifolds,” Sib. Mat. Zh., 33, No. 4, 104–119 (1992).

    MathSciNet  Google Scholar 

  162. E. D. Rodionov, “Standard homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 328, No. 2, 147–149 (1993).

    MathSciNet  Google Scholar 

  163. E. D. Rodionov, “Closures of geodesic curves of compact naturally reductive spaces,” in: Proc. Conf Dedicated to the Memory of N. I. Lobachevskii [in Russian], Kazan (1993).

  164. E. D. Rodionov, “Simply connected compact five-dimensional homogeneous Einstein manifolds,” Sib. Mat. Zh., 35, No. 1, 163–168 (1994).

    MathSciNet  Google Scholar 

  165. E. D. Rodionov, Homogeneous Riemannian Manifolds with Einstein Metric [in Russian], Dissertation, Inst. Math. Sib. Department Russ. Acad. Sci., Novosibirsk (1994).

    Google Scholar 

  166. E. D. Rodionov, “Structure of the standard homogeneous Einstein manifolds with simple isotropy group, I,” Sib. Mat. Zh., 37, No. 1, 175–192 (1996).

    MathSciNet  Google Scholar 

  167. E. D. Rodionov, “Structure of the standard homogeneous Einstein manifolds with simple isotropy group, II,” Sib. Mat. Zh., 37, No. 3, 624–632 (1996).

    MathSciNet  Google Scholar 

  168. E. D. Rodionov and V. V. Slavskii, “Curvature estimations of left-invariant Riemannian metrics on three-dimensional Lie groups,” in: Differ. Geom. Appl. Satellite Conference of ICM in Berlin, Aug. 10–14, 1998, Brno Masaryk University in Brno (Czech Republic), Brno (1999), pp. 111–126.

    Google Scholar 

  169. E. D. Rodionov and V. V. Slavskii, “Conformal and rank-one deformations of Riemannian metrics with small areas of zero curvature on a compact manifold,” in: Proc. Conf. “Geometry and Applications” Dedicated to the 70th Birthday of V. A. Toponogov, March 13–16, 2000, Inst. Math. Sib. Department Russ. Acad. Sci., Novosibirsk (2000), pp. 171–182.

    Google Scholar 

  170. E. D. Rodionov and V. V. Slavskii, “One-dimensional sectional curvature of Riemannian manifolds,” Dokl. Ross Akad. Nauk, 387, No. 4 (2000).

    Google Scholar 

  171. E. D. Rodionov and V. V. Slavskii, “Locally conformally homogeneous Riemannian spaces,” J. ASU, 1, No. 19, 39–42 (2001).

    Google Scholar 

  172. E. D. Rodionov and V. V. Slavskii, “Locally conformally homogeneous spaces,” Dokl. Ross. Acad. Nauk, 387, No. 3 (2002).

    Google Scholar 

  173. E. D. Rodionov and V. V. Slavskii, “Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces,” Commun. Math. Univ. Carolinae, 43, No. 2, 271–282 (2002).

    MATH  MathSciNet  Google Scholar 

  174. E. D. Rodionov, V. V. Slavskii, and L. N. Chibrikova, “Left-invariant Lorenz metrics on Lie groups with zero square of the length of the Schouten-Weil tensor,” Vestn. BGPU, Ser. Estestv. Tochnye Nauki, 4 (2004).

  175. V. Yu. Rovenskii and V. A. Toponogov, “Geometric characteristics of the complex projective space,” in: Geometry and Topology of Homogeneous Spaces [in Russian], Barnaul (1988), pp. 98–104.

  176. A. Sagle, “On anti-commutative algebras and general Lie triple systems,” Pac. J. Math., 15, 281–291 (1965).

    MATH  MathSciNet  Google Scholar 

  177. Y. Sakane, “Homogeneous Einstein metrics on flag manifolds,” Lobachevskii J. Math., 4, 71–87 (1999).

    MATH  MathSciNet  Google Scholar 

  178. H. Sato, “On topological Blaschke conjecture, III,” Lect. Notes Math., 1201, 242–253 (1986).

    Article  Google Scholar 

  179. D. Schueth, “On the ’standard’ condition for noncompact homogeneous Einstein spaces,” Geom. Dedic. (to appear).

  180. H. Singh, “On focal locus of submanifolds of naturally reductive compact Riemannian homogeneous spaces,” Proc. Indian Acad. Sci., Math. Sci., 96, No. 2, 131–139 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  181. V. V. Slavskii, “Conformally flat metrics of bounded curvature on the n-dimensional sphere,” in: Studies in Geometry “in the Large” and Mathematical Analysis [in Russian], 9, Nauka, Novosibirsk (1987), pp. 183–199.

    Google Scholar 

  182. V. V. Slavskii, “Conformally flat metrics and the geometry of the pseudo-Euclidean space,” Sib. Mat. Zh., 35, No. 3, 674–682 (1994).

    MathSciNet  Google Scholar 

  183. M. Stephan, “Conformally flat Lie groups,” Math. Z., 228, 155–175 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  184. V. A. Toponogov, “Extremal theorems for Riemannian spaces of curvature bounded from above,” Sib. Mat. Zh., 15, No. 6, 1348–1371 (1974).

    MATH  MathSciNet  Google Scholar 

  185. V. A. Topononogov, “Riemannian spaces of diameter equal to π,” Sib. Mat, Zh., 16, No. 1, 124–131 (1975).

    Google Scholar 

  186. F. Tricerri, “Locally homogeneous Riemannian manifolds,” Rend. Semin. Mat. Torino, 50, No. 4, 411–426 (1992).

    MATH  MathSciNet  Google Scholar 

  187. F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lect. Note Ser., 83, Cambridge Univ. Press.

  188. S. Z. Shefel, “On two classes of k-dimensional surfaces in the n-dimensional Euclidean space,” Sib. Mat. Zh., 10, No. 2, 459–467 (1969).

    MATH  MathSciNet  Google Scholar 

  189. F. M. Valiev, “Precise estimates for the sectional curvatures of homogeneous Riemannian metrics on Wallach spaces,” Sib. Mat. Zh., 20, 248–262 (1979).

    MATH  MathSciNet  Google Scholar 

  190. E. B. Vinberg, “Invariant linear connections in a homogeneous manifold,” Tr. Mosk. Mat. Obshch., 9, 191–210 (1960).

    MathSciNet  Google Scholar 

  191. E. B. Vinberg and S. G. Gindikin, “Kähler manifolds admitting a transitive solvable automorphism group,” Mat. Sb., 74, 357–377 (1967).

    MathSciNet  Google Scholar 

  192. D. E. Volper, “Sectional curvatures of a diagonal family of S p (n+1)-invariant metrics on the 4n+3-dimensional spheres,” Sib. Mat. Zh., 35, No. 6, 1089–1100 (1994).

    Article  MathSciNet  Google Scholar 

  193. D. E. Volper, “A family of metrics on the 15-dimensional sphere,” Sib. Mat. Zh., 38, No. 2, 263–275 (1997).

    MathSciNet  Google Scholar 

  194. D. E. Volper, “Sectional curvatures of nonstandard metrics on CP 2n+1,” Sib. Mat. Zh., 40, No. 1, 49–56 (1999).

    MathSciNet  Google Scholar 

  195. N. R. Wallach, “Compact homogeneous Riemannian manifolds with strictly positive curvature,” Ann. Math., 96, 277–295 (1972).

    Article  MathSciNet  Google Scholar 

  196. M. Wang, “Some examples of homogeneous Einstein manifolds in dimension seven,” Duke Math. J., 49, 23–28 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  197. M. Wang, “Einstein metrics from symmetry and bundle constructions,” in: Surv. Differ. Geom.: Essays on Einstein Manifolds, International Press, Cambridge (1999), pp. 287–325.

    Google Scholar 

  198. M. Wang and W. Ziller, “On normal homogeneous Einstein manifolds,” Ann. Sci. Ecole Norm. Sup., 18, 563–633 (1985).

    MATH  MathSciNet  Google Scholar 

  199. M. Wang and W. Ziller, “Existence and non-existence of homogeneous Einstein metrics,” Invent. Math., 84, 177–194 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  200. M. Wang and W. Ziller, “Einstein metrics on principal torus bundles,” J. Differ. Geom., 31, 215–248 (1990).

    MATH  MathSciNet  Google Scholar 

  201. M. Wang and W. Ziller, “On isotropy irreducible Riemannian manifolds,” Acta Math., 166, 223–261 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  202. C. Will, “Rank-one Einstein solvmanifolds of dimension 7,” Differ. Geom. Appl., 19, 307–318 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  203. J. Wolf, “Homogeneity and bounded isometries in manifolds of negative curvature,” Ill. J. Math., 8, 14–18 (1964).

    MATH  Google Scholar 

  204. J. Wolf, “The geometry and structure of isotropy irreducible homogeneous spaces,” Acta Math., 120, 59–148 (1968); correction: Acta Math., 152, 141-142 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  205. T. H. Wolter, “Einstein metrics on solvable groups,” Math. Z., 206, 457–471 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  206. T. C. Yang, “On the Blaschke conjecture,” Ann. Math. Stud., 102, 159–171 (1982).

    Google Scholar 

  207. K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland Publ., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publ., New York (1957).

    MATH  Google Scholar 

  208. W. Ziller, “The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces,” Comment. Math. Helv., 52, 573–590 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  209. W. Ziller, “Homogeneous Einstein metrics on spheres and projective spaces,” Math. Ann., 259, 351–358 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  210. W. Ziller, “Weakly symmetric spaces,” in: Progr. Nonlin. Differ. Equations, 20, Birkhauser (1996), pp. 355–368.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 37, Geometry, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikonorov, Y.G., Rodionov, E.D. & Slavskii, V.V. Geometry of homogeneous Riemannian manifolds. J Math Sci 146, 6313–6390 (2007). https://doi.org/10.1007/s10958-007-0472-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0472-z

Keywords

Navigation