Skip to main content
Log in

The A. D. Aleksandrov maximum principle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. D. Aleksandrov, “Studies in maximum principle, I,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 5, 126–157 (1958).

    Google Scholar 

  2. A. D. Aleksandrov, “Studies in maximum principle, II,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 3, 3–12 (1959).

    Google Scholar 

  3. A. D. Aleksandrov, “Studies in maximum principle, III,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 5, 16–32 (1959).

    Google Scholar 

  4. A. D. Aleksandrov, “Studies in maximum principle, IV,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 3, 3–15 (1960).

    Google Scholar 

  5. A. D. Aleksandrov, “Studies in maximum principle, V,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 5, 16–26 (1960).

    Google Scholar 

  6. A. D. Aleksandrov, “Studies in maximum principle, VI,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 1, 3–20 (1961).

    Google Scholar 

  7. A. D. Aleksandrov, “Certain estimates concerning the Dirichlet problem,” Dokl. Akad. Nauk SSSR, 134, No. 5, 1001–1004 (1960).

    Google Scholar 

  8. A. D. Aleksandrov, “Uniqueness conditions and eastimates for a solution of the Dirichlet problem,” Vest. Leningr. Univ. Ser. Mat. Mekh., Astron., 13, 5–29 (1963).

    Google Scholar 

  9. A. D. Aleksandrov, “The method of normal map in uniqueness problems and estimations for elliptic equations,” in: Seminari 1962/63 di Analisi, Algebra, Geometria e Topologia, 2, Roma (1965), pp. 744–786.

    Google Scholar 

  10. A. D. Aleksandrov, “Majorization of solutions of second-order linear equations,” Vestn. Leningr. Univ. Ser. Mat., Mekh., Astron., 1, 5–25 (1966).

    Google Scholar 

  11. A. D. Aleksandrov, “One general majorization method for solutions of the Dirichlet problem,” Sib. Mat. Zh., 7, No. 3, 486–498 (1966).

    MATH  Google Scholar 

  12. A. D. Aleksandrov, “On majorants of solutions and uniqueness conditions for elliptic equations,” Vestn. Leningr. Univ. Ser. Mat., Mekh., Astron., 7, 5–20 (1966).

    Google Scholar 

  13. A. D. Aleksandrov, “Impossibility of general estimates for solutions and uniqueness conditions for linear equations with norms weaker than L n ,” Vestn. Leningr. Univ. Ser. Mat., Mekh., Astron., 13, 5–10 (1966).

    Google Scholar 

  14. A. D. Aleksandrov, “Maximum principle,” Dokl. Akad. Nauk SSSR, 173, No. 2, 247–250 (1967).

    MathSciNet  Google Scholar 

  15. A. D. Aleksandrov, “Certain estimates for the derivative of a solution of the Dirichlet problem on the boundary,” Dokl. Akad. Nauk SSSR, 173, No. 3, 487–490 (1967).

    MathSciNet  Google Scholar 

  16. A. D. Aleksandrov, Certain estimates for solutions of the Dirichlet problem,” Vestn. Leningr. Univ. Ser. Mat., Mekh., Astron., 7, 19–29 (1967).

    Google Scholar 

  17. D. E. Apushkinskaya, “Estimates for the maximum of solutions of parabolic equations with the Venttsel’ boundary condition,” Vestn. Leningr. Univ. Ser. Mat. Mekh., Astron., 2, 3–12 (1991).

    MathSciNet  Google Scholar 

  18. D. E. Apushkinskaya and A. I. Nazarov “Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel boundary condition,” Trans. Amer. Math. Soc., 64, 1–13 (1995).

    Google Scholar 

  19. D. E. Apushkinskaya and A. I. Nazarov, “Hölder estimates for solutions of degenerate Venttsel’ boundary-value problems for parabolic and elliptic equations of nondivergence form, Probl. Math. Anal., 17, 3–19 (1997).

    MATH  Google Scholar 

  20. D. E. Apushkinskaya and A. I. Nazarov, “Linear two-phase Venttsel problems,” Arch. Mat., 39, No. 2, 201–222 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. E. Apushkinskaya and A. I. Nazarov, “Estimates on the boundary of the domain for the gradient of a solution of a nondivergence parabolic equation with a ‘mixed’ right-hand side and coefficients by lower derivatives,” Probl. Math. Anal., 14, 3–27 (1995).

    MATH  Google Scholar 

  22. D. E. Apushkinskaya and A. I. Nazarov, “A survey of results on nonlinear Venttsel problems,” Appl. Math., 45, No. 1, 69–80 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Ya. Bakel’man, “To the theory of quasilinear elliptic equations,” Sib. Mat. Zh., 2, 179–186 (1961).

    MATH  MathSciNet  Google Scholar 

  24. L. A. Caffarelli, “Elliptic second order equations,” Rend. Semin. Mat. Fis. Milano, 58, 253–284 (1988).

    MATH  MathSciNet  Google Scholar 

  25. L. A. Caffarelli, “Interior apriori estimates for solutions of fully nonlinear equations,” Ann. Math., 130, 189–213 (1989).

    Article  MathSciNet  Google Scholar 

  26. L. A. Caffarelli and X. Cabré, “Fully nonlinear elliptic equations,” AMS Colloq. Publ., 43 (1995).

  27. X. Cabré, “On the Aleksandrov-Bakel’man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations,” Commun. Pure Appl. Math., 48, 539–570 (1995).

    MATH  Google Scholar 

  28. X. Cabré, “Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations,” Discr. Contin. Dynam. Systems, 8, No 2, 331–359 (2002).

    Article  MATH  Google Scholar 

  29. E. B. Fabes and D. W. Strook, “The L p-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations,” Duke Math. J., 51, 997–1016 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Franciosi, “Maximum principle for second-order elliptic equations and applications,” J. Math. Anal. Appl., 138, 343–348 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Gilbarg and N. S. Trudinet, Second-Order Elliptic Partial Differential Equations [Russiuan translation], Nauka, Moscow (1989).

    MATH  Google Scholar 

  32. C. E. Kenig and N. S. Nadirashvili, “On optimal estimates for some oblique derivative problems,” J. Funct. Anal., 187, 70–93 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  33. N. V. Krylov, “Certain estimates for the density of distribution of a stochastic integral,” Izv. Akad. Nauk SSSR. Ser. Mat., 38, No. 1, 228–248 (1974).

    MATH  MathSciNet  Google Scholar 

  34. N. V. Krylov, “Sequences of convex functions and estimates for the maximum of solution of a parabolic equation,” Sib. Mat. Zh., 17, No. 2, 290–303 (1976).

    MATH  MathSciNet  Google Scholar 

  35. N. V. Krylov, “On the maximum principle for nonlinear elliptic and parabolic equations,” Izv. Akad. Nauk SSSR. Ser. Mat., 42, No. 5, 1050–1062 (1978).

    MATH  MathSciNet  Google Scholar 

  36. N. V. Krylov, “On estimates for the maximum of solutions of a paabolic equation and estimates for distribution of a semimartingal,” Mat. Sb., 130, No. 2, 207–221 (1986).

    MathSciNet  Google Scholar 

  37. N. V. Krylov and M. V. Safonov, “Esrimates for the probabiity of quenching of a diffusion process,” Dokl. Akad. Nauk SSSR, 245, No. 1, 18–20 (1979).

    MathSciNet  Google Scholar 

  38. N. V. Krylov and M. V. Safonov, “A certain property of solutions of parabolic equations with measurable coefficients,” Izv. Akad. Nauk SSSR. Ser. Mat., 44, No. 1, 161–175 (1980).

    MATH  MathSciNet  Google Scholar 

  39. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1964).

    MATH  Google Scholar 

  40. O. A. Ladyzhenskaya and N. N. Ural’tseva, “On estimates for Hölder norms of solutions of quasilinear equations of nondivergence type,” Usp. Mat. Nauk, 35, No. 4, 144–145 (1980).

    Google Scholar 

  41. O. A. Ladyzhenskaya and N. N. Ural’tseva, “Estimates for solutions of quasilinear parabolic equations of nondivergence type,” Usp. Mat. Nauk, 36, No. 4, 220 (1981).

    Google Scholar 

  42. O. A. Ladyzhenskaya and N. N. Ural’tseva, “Estimates for the Hölderian norm of solutions of quasilinear second-order elliptic equations of the general form,” Zap. Nauchn. Semin. LOMI, 96, 161–168 (1980).

    MathSciNet  MATH  Google Scholar 

  43. O. A. Ladyzhenskaya and N. N. Ural’tseva, “Extimates and the Hölder constants for functions satisfying a uniformly elliptic or uniformly parabolic quasilinear inequality with unbounded coefficients,” Zap. Nauchn. Semin. LOMI, 147, 72–94 (1985).

    MathSciNet  MATH  Google Scholar 

  44. O. A. Ladyzhenskaya and N. N. Ural’tseva, “On solvability of the first boundary-value problem for quasilinear elliptic and parabolic equations with singularities,” Dokl. Akad. Nauk SSSR, 281, No. 2, 275–278 (1985).

    MathSciNet  Google Scholar 

  45. O. A. Ladyzhenskaya and N. N. Uraltseva, On esimates on the boundary of the domain for Hölder norms of derivatives of solutions to quasilinear elliptic and parabolivc equations of the general form, Preprint, LOMI (1985), pp. 3–43.

  46. O. A. Ladyzhenskaya and N. N. Ural’tseva, “Majorization on the boundary of the domain of the Hölder norms of derivative of solutions to quasilinear elliptic and parabolic equations of the general form, Tr. Mat. Inst. Steklova, 179, 102–125 (1988).

    MathSciNet  Google Scholar 

  47. O. A. Ladyzhenskaya and N. N. Uraltseva, “A survey of results on the solvability of boundary-value problems for uniformly elliptic and uniformly parabolic second-order equations having unbounded singularities,” Usp. Mat. Nauk, 41, No. 5, 59–83 (1986).

    MathSciNet  Google Scholar 

  48. G. M. Lieberman, “The maximum principle for equations with composite coefficients,” Electronic J. Differ. Equations, 38, 1–17 (2000).

    MathSciNet  Google Scholar 

  49. G. M. Lieberman, “Maximum estimates for oblique derivative problems with right-hand side in L p, p < n,” Manuscr. Math., 112, 459–472 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  50. Y. Luo, “An Aleksandrov-Bakel’man-type maximum principle and applications,” J. Differ. Equations, 101, No. 2, 213–231 (1993).

    Article  MATH  Google Scholar 

  51. Y. Luo and N. S. Trudinger, “Linear second-order elliptic equations with Venttsel boundary conditions,” Proc. Roy. Soc. Edinburgh, Sec. A., 118, 193–207 (1991).

    MATH  MathSciNet  Google Scholar 

  52. N. S. Nadirashvili, “Certain estimates in the oblique derivative problem,” Izv. Akad. Nauk SSSR, Ser. Mat., 52, No. 5, 1082–1090 (1988).

    MATH  Google Scholar 

  53. A. I. Nazarov, “On estimates for the Hölder constants of solutions of the oblique derivative initial-value problem for a parabolic equation,” Zap. Nauch. Semin. LOMI, 163, 130–131 (1987).

    Google Scholar 

  54. A. I. Nazarov, “Hölder estimates for bounded solutions of oblique derivative problems for parabolic equations of nondivergence structure,” Probl. Math. Anal., 11, 37–46 (1990).

    MATH  Google Scholar 

  55. A. I. Nazarov, “Interpolation of linear spaces and estimates for the maximum of a solution of parabolic equations,” in: Partial Differential Equations [in Russian], 2, Inst. Math. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, (1987), pp. 50–72.

    Google Scholar 

  56. A. I. Nazarov, “Estimates near the boundary for solutions of the Venttsel’ problem for parabolic and elliptic equations in a domain with boundary of class W 2 q−1 ,” Probl. Math. Anal., 24, 181–204 (2002).

    MATH  Google Scholar 

  57. A. I. Nazarov, “Estimates for the maximum of solutions of elliptic and parabolic equations through the weighted norms of the right-hand side,” Algebra Analiz, 13, No. 2, 151–164 (2001).

    Google Scholar 

  58. A. I. Nazarov and N. N. Ural’tseva, “Convex monotone hulls and an estimate for the maximum of a solution of a parabolic equation,” Zap. Nauch. Semin. LOMI, 147, 95–109 (1985).

    MathSciNet  MATH  Google Scholar 

  59. C. Pucci, “Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellitico,” Ann. Sc. Norm. Sup. Pisa, 16, 159–172 (1962).

    MATH  MathSciNet  Google Scholar 

  60. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey (1970).

    MATH  Google Scholar 

  61. C. Pucci, “Maximizing elliptic operators, applications, and conjectures,” in: Partial Differential Equations, Proc. Intern. Conf. [in Russian], Nauka, Novosibirsk (1986), pp. 167–172.

    Google Scholar 

  62. M. V. Safonov, “Harnack inequality for elliptic equations and Hölder continuity of their solutions,” Zap. Nauch. Semin. LOMI, 96, 272–287 (1980).

    MathSciNet  MATH  Google Scholar 

  63. N. S. Trudinger, “Local estimates for subsolutions and supersolutions of general second-order elliptic quasilinear equations,” Inv. Math., 61, 67–79 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  64. N. S. Trudinger, Private communication.

  65. K. Tso, “On an Aleksandrov-Bakel’man type maximum principle for second-order parabolic equations,” Commun. Partial Differ. Equations, 10, No. 5, 543–553 (1985).

    MATH  MathSciNet  Google Scholar 

  66. L. Wang, “On the regularity theory of fully nonlinear parabolic equations, I,” Commun. Pure Appl. Math., 45, 27–76 (1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 29, Voronezh Conference-1, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A.I. The A. D. Aleksandrov maximum principle. J Math Sci 142, 2154–2171 (2007). https://doi.org/10.1007/s10958-007-0126-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0126-1

Keywords

Navigation