Skip to main content
Log in

Introduction to the theory of functional differential equations and their applications. Group approach

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we give an introduction to the theory of nonlinear functional differential equations of pointwise type on a finite interval, semi-axis, or axis. This approach is based on the formalism using group peculiarities of such differential equations. For the main boundary-value problem and the Euler-Lagrange boundary-value problem, we consider the existence and uniqueness of the solution, the continuous dependence of the solution on boundary-value and initial-value conditions, and the “roughness” of functional differential equations in the considered boundary-value problems. For functional differential equations of pointwise type we also investigate the pointwise completeness of the space of solutions for given boundary-value conditions, give an estimate of the rank for the space of solutions, describe types of degeneration for the space of solutions, and establish conditions for the “smoothness” of the solution. We propose the method of regular extension of the class of ordinary differential equations in the class of functional differential equations of pointwise type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Antonevich and V. Lebedev, Functional Differential Equations: I, II. C*-theory, Longman Scientific & Technical, Pitman monographs and surveys in pure and applied mathematics, 70, London—New York (1994).

  2. V. I. Arnold, Ordinary Differential Equations, The M.I.T. Press, Cambridge, Mass.—London (1973).

    Google Scholar 

  3. L. A. Beklaryan, “A boundary-value problem for a differential equation with deviating argument,” Sov. Math. Dokl., 34, 413–415 (1987).

    MATH  Google Scholar 

  4. L. A. Beklaryan, “On the reducibility of a differential equation with deviating argument to an equation with constant commensurable deviations,” Math. Notes, 44, No. 5–6, 787–789 (1989).

    MathSciNet  Google Scholar 

  5. L. A. Beklaryan, “A differential equation with deviating argument as an infinite-dimensional dynamical system,” Preprint, Vychislitel’nyj Tsentr AN SSSR, Soobshcheniya po Prikladnoj Matematike (1989).

  6. L. A. Beklaryan, “On a method of regularization of boundary value problems for differential equations with deviating argument,” Sov. Math. Dokl., 43, 567–571 (1991).

    MATH  MathSciNet  Google Scholar 

  7. L. A. Beklaryan, “An optimal control problem for systems with deviating argument, and its connection with the finitely generated group of homeomorphisms of ℝ generated by the deviation functions,” Sov. Math. Dokl., 43, 600–605 (1991).

    MATH  MathSciNet  Google Scholar 

  8. L. A. Beklaryan, “The structure of the quotient group of a group of orientation-preserving homeomorphisms of ℝ modulo the subgroup generated by the union of stabilizers,” Russ. Acad. Sci., Dokl., Math., 48, No. 1, 37–39 (1994).

    MathSciNet  Google Scholar 

  9. L. A. Beklaryan, “Invariant and projectively invariant measures for groups of orientation-preserving homeomorphisms of ℝ,” Russ. Acad. Sci., Dokl., Math., 48, No. 2, 387–390 (1994).

    MathSciNet  Google Scholar 

  10. L. A. Beklaryan, “On the theory of linear differential-delay equations,” Russ. Math. Surv., 49, No. 6, 197–198 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  11. L. A. Beklaryan, Introduction to the Qualitative Theory of Differential Equations with Deviating Arguments and Their Applications [in Russian], CEMI of the Russian Academy of Science, Moscow (1996).

    Google Scholar 

  12. L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of ℝ. I: Invariant measures,” Sb. Math., 187, No. 3, 335–364 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of ℝ. II: Projectively-invariant measures,” Sb. Math., 187, No. 4, 469–494 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. A. Beklaryan, “A criterion connected with the structure of the fixed-point set for the existence of a projectively invariant measure for groups of orientation-preserving homeomorphisms of ℝ,” Russ. Math. Surv., 51, No. 3, 539–540 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. L. A. Beklaryan, “Specific group properties of differential equations with deviating argument. Introduction to the linear theory,” Math. Notes, 63, No. 4, 427–435 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of ℝ. III: ω-projectively invariant measures,” Sb. Math., 190, No. 4, 521–538 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. L. A. Beklaryan, “Group singularities of differential equations with deviating arguments and metric invariants related to them,” J. Math. Sci. (New York), 105, No. 1, 1799–1811 (2001).

    MATH  MathSciNet  Google Scholar 

  18. L. A. Beklaryan, “About canonical types of the differential equations with deviating argument,” Funct. Differ. Equ., 8, No. 1–2, 25–33 (2001).

    MATH  MathSciNet  Google Scholar 

  19. L. A. Beklaryan and M. G. Shmul’yan, “Completeness of solutions to a differential equation with a deviating argument that is majorized by exponential functions,” Dokl. Math., 51, No. 2, 256–259 (1995).

    Google Scholar 

  20. R. Bellman and K. L. Cooke, Differential-difference Equations, Mathematics in Science and Engineering, Academic Press, New York—London (1963).

    Google Scholar 

  21. A. Boucherif, “First-order differential inclusions with nonlocal initial conditions,” Appl. Math. Lett., 15, No. 4, 409–414 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Cartan, Calcul Differentiel. Formes Differentielles, Hermann, Paris (1967).

    Google Scholar 

  23. C.-H. Chen, S.-T. Pan, and J.-G. Hsieh, “Stability of nominally stable uncertain singularly perturbed systems with multiple time delays,” Control and Cybernetics, 31, No. 1, 4–15 (2002).

    Google Scholar 

  24. F. Colonius, A. Manitius, and D. Salamon, “Structure theory and duality for time varying retarded functional differential equations,” J. Differential Equations, 78, No. 2, 320–353 (1989).

    Article  MathSciNet  Google Scholar 

  25. Yu. L. Daletskij and M. G. Krejn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, 43, AMS, Providence, R.I. (1974).

    Google Scholar 

  26. L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory of Differential Equations with Deviating Argument, Mathematics in Science and Engineering, Academic Press, New York—London (1973).

    Google Scholar 

  27. K. Ezzinbi and J. Liv, “Periodic solutions of non-densely defined delay evolution equations,” J. of Appl. Math. Stochastic Anal., 15, No. 2, 113–123 (2002).

    Google Scholar 

  28. Ya. I. Frenkel and T. A. Kontorova, “On the theory of plastic deformation and twinning,” J. Phys. Acad. Sci. USSR, 1, 137–149 (1939).

    MathSciNet  Google Scholar 

  29. J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, Springer, New York—Heidelberg-Berlin (1977).

    Google Scholar 

  30. J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer, New York (1993).

    Google Scholar 

  31. Ph. Hartman, Ordinary Differential Equations, Birkhauser, Boston—Basel—Stuttgart (1982).

    Google Scholar 

  32. A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, Studies in Mathematics and Its Applications, 6, North-Holland Publishing Company, Amsterdam—New York—Oxford (1979).

    Google Scholar 

  33. A. G. Kamenskii, “Boundary-value problems for equations with formally symmetric differential-difference operators,” Differ. Equations, 12, 569–576 (1977).

    MATH  Google Scholar 

  34. G. A. Kamenskii, “On the general theory of equations involving a deviating argument,” Dokl. Akad. Nauk SSSR, 120, No. 4, 697–700 (1958).

    MATH  MathSciNet  Google Scholar 

  35. G. A. Kamenskii and A. D. Myshkis, “Formulation of boundary-value problems for differential equations with deviating arguments containing several highest-order terms,” Differ. Equations, 10, 302–309 (1975).

    Google Scholar 

  36. G. A. Kamenskii, A. D. Myshkis, and A. L. Skubachevskii, “Smooth solutions of a boundary-value problem for a differential-difference equation of neutral type,” Ukr. Math. J., 37, 469–475 (1985).

    MathSciNet  Google Scholar 

  37. G. A. Kamenskii, A. D. Myshkis, and A. L. Skubachevskii, “Generalized and smooth solutions of boundary-value problems for functional differential equations with many senior members,” Casopis pro pestovani matematiky, 111, 254–266 (1986).

    MathSciNet  Google Scholar 

  38. G. A. Kamenskii and A. L. Skubachevskii, Linear Boundary-Value Problems for Differential-Difference Equations [in Russian], MAI, Moscow (1990).

    Google Scholar 

  39. Yu. I. Karlovich, “C*-algebras of operators of convolution type with discrete groups of shifts and oscillating coefficients,” Sov. Math. Dokl., 38, 301–307 (1989).

    MATH  MathSciNet  Google Scholar 

  40. V. Khan, “Overview of the theory of differential-difference equations with constant and variable deviations,” Matematika, 5, No. 6, 75–98 (1961).

    Google Scholar 

  41. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock Press, Albany, New York (1961).

    Google Scholar 

  42. M. A. Krasnosel’skii, Displacement Operators along Trajectories of Differential Equations [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  43. N. N. Krasovskii, Theory of Control of Motion [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  44. C. Marcelle and A. Salvadori, “Interaction among the theories of ordinary differential equations in various hereditary settings,” Nonlinear Analysis, 35, 1001–1017 (1999).

    MathSciNet  Google Scholar 

  45. V. S. Mokejchev and N. P. Evlampiev, “Solution of a differential-difference equation on the semi-axis,” Sov. Math., 35, No. 4, 42–45 (1991).

    Google Scholar 

  46. A. D. Myshkis, Linear Differential Equations with Retarded Argument [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  47. A. D. Myshkis, “On some problems of the theory of differential equations with deviating argument,” Usp. Mat. Nauk, 32, No. 2, 172–202 (1977).

    MathSciNet  Google Scholar 

  48. A. D. Myshkis and Z. B. Tsalyuk, “Nonlocal continuability of the solutions of differential equations with a lagging argument,” Differ. Equations, 5, 833–835 (1972).

    Google Scholar 

  49. N. K. Nikolskii, “Lectures on the shift operator. I, II, III, IV,” J. Sov. Math., 8, 41–65 (1977), 9, 204–227 (1978), 14, 1103–1120 (1980), 16, 1118–1139 (1981).

    MATH  Google Scholar 

  50. Ya. B. Pesin, “Behavior of solutions of a strongly nonlinear differential equation with delay argument,” Differ. Equations, 10, 789–797 (1975).

    MATH  Google Scholar 

  51. E. Pinney, Ordinary Difference-differential Equations, University of California Press, Berkeley—Los Angeles (1958).

    Google Scholar 

  52. L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Mass.—Palo Alto, Calif.—London (1962).

    Google Scholar 

  53. L. D. Pustyl’nikov, “Infinite-dimensional nonlinear ordinary differential equations and the KAM theory,” Russ. Math. Surv., 52, No. 3, 551–604 (1997).

    MathSciNet  Google Scholar 

  54. A. P. Robertson and V. Dž. Robertson, Topological Vector Spaces, University Press, Cambridge (1964).

    Google Scholar 

  55. L. E. Rossovskii and A. L. Skubachevskii, “Solvability and regularity of solutions for some classes of elliptic functional-differential equations,” J. Math. Sci. (New York), 104, No. 2, 1008–1059 (2001).

    Google Scholar 

  56. W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York (1973).

    Google Scholar 

  57. A. N. Sharkovskij, “On the problem of uniqueness of solutions to differential equations with deviating arguments,” Mat. Fiz., No. 8, 167–172 (1970).

    Google Scholar 

  58. A. N. Sharkovskij, “Functional differential equations with a finite group of argument transformations,” Asymptotic behaviour of the solutions of functional-differential equations, Coll. Sci. Works, Akad. Nauk Ukr. SSR, Inst. Mat., Kiev, 118–142 (1978).

  59. A. N. Sharkovskij, “Classification of one-dimensional dynamical system,” Eur. Conf. Iterat. Theory, Singapore, 42–55 (1987).

  60. A. N. Sharkovskij, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and Their Applications, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht (1993).

    Google Scholar 

  61. A. L. Skubachevskii, “Smoothness of generalized solutions of the first boundary-value problem for an elliptic difference-differential equation,” Math. Notes, 34, 537–541 (1984).

    MATH  Google Scholar 

  62. A. L. Skubachevskii, “Nonlocal boundary-value problems with a shift,” Math. Notes, 38, 833–839 (1985).

    MATH  MathSciNet  Google Scholar 

  63. A. L. Skubachevskii, “Generalized and classical solutions of boundary-value problems for differential-difference equations,” Russ. Acad. Sci., Dokl., Math., 49, No. 1, 132–137 (1994).

    MATH  MathSciNet  Google Scholar 

  64. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhauser, Basel—Boston—Berlin (1997).

    Google Scholar 

  65. V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  66. K. G. Valeev, “Linear differential equations with a time lag depending linearly on the argument,” Sibirsk. Mat. Ž., 5, No. 2, 290–309 (1964).

    MATH  MathSciNet  Google Scholar 

  67. J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York—London (1972).

    Google Scholar 

  68. A. M. Zverkin, “Transformation of the lag in differential equations with deviating argument,” Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Družby Narodov Patrisa Lumumby, 9, 60–75 (1975).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 8, Functional Differential Equations, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beklaryan, L.A. Introduction to the theory of functional differential equations and their applications. Group approach. J Math Sci 135, 2813–2954 (2006). https://doi.org/10.1007/s10958-006-0145-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0145-3

Keywords

Navigation