Skip to main content
Log in

On a Scaled Symmetric Dai–Liao-Type Scheme for Constrained System of Nonlinear Equations with Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new Dai–Liao (DL)-type projection algorithm is presented for large-dimension nonlinear monotone problems with signal reconstruction and image recovery applications. The inspiration behind the work comes from two of the open problems propounded by Andrei (Bull Malays Math Sci Soc 34(2):319–330, 2011) involving the optimal value for the DL nonnegative parameter and the best conjugacy condition as well as the fine attributes expressed by four-term methods for unconstrained optimization. Based on the eigenvalue study of a symmetric DL-type iteration matrix, another optimal choice of the DL parameter is obtained, which is incorporated in a five-term direction scheme. Combining this with the projection method, a new DL algorithm which converges globally is developed. To implement the algorithm, a derivative-free line search mechanism is employed. Also, by conducting some numerical experiments with the new scheme and some recent DL-type methods, the efficiency of the former in solving nonlinear monotone problems as well as the \(\ell _1-norm\) regularized problems in compressed sensing is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abubakar, A.B., Kumam, P.: A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer. Algor. 81(1), 197–210 (2018)

    MathSciNet  Google Scholar 

  2. Abubakar, A.B., Kumam, P.: A descent Dai–Liao projection method for convex constrained nonlinear monotone equations with applications. Thai J. Math. 128–152 (2018)

  3. Ahmed, K., Waziri, M.Y., Halilu, A.S.: On two symmetric Dai–Kou type schemes for constrained monotone equations with image recovery application. Euro J. Comput. Optim. (2023). https://doi.org/10.1016/j.ejco.2023.100057

    Article  MathSciNet  Google Scholar 

  4. Ahmed, K., Waziri, M.Y., Halilu, A.S., Murtala, S.: Sparse signal reconstruction via Hager–Zhang-type schemes for constrained system of nonlinear equations. Optimization (2023). https://doi.org/10.1080/02331934.2023.2187255

    Article  Google Scholar 

  5. Aminifard, Z., Babaie-Kafaki, S.: An optimal parameter choice for the Dai-Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix. 4OR 17(3), 317–330 (2019)

  6. Andrei, N.: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34(2), 319–330 (2011)

    MathSciNet  Google Scholar 

  7. Arazm, M.R., Babaie-Kafaki, S., Ghanbari, R.: An extended Dai-Liao conjugate gradient method with global convergence for nonconvex functions. Glasnik Matematicki 52(72), 361–375 (2017)

    MathSciNet  Google Scholar 

  8. Babaie-Kafaki, S., Ghanbari, R.: A class of descent four-term extension of the Dai–Liao conjugate gradient method based on the scaled memoryless BFGS update. J. Indust. Manag. Optim. 13(2), 649–658 (2017)

    MathSciNet  Google Scholar 

  9. Babaie-Kafaki, S., Ghanbari, R., Mahdavi-Amiri, N.: Two new conjugate gradient methods based on modified secant equations. J. Comput. Appl. Math. 234, 1374–1386 (2010)

    MathSciNet  Google Scholar 

  10. Babaie-Kafaki, S., Ghanbari, R.: A descent family of Dai–Liao conjugate gradient methods. Optim. Methods Softw. 29(3), 583–591 (2013)

    MathSciNet  Google Scholar 

  11. Babaie-Kafaki, S., Ghanbari, R.: The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234, 625–630 (2014)

    MathSciNet  Google Scholar 

  12. Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai–Liao conjugate gradient methods. Optimization 64, 2277–2287 (2015)

    MathSciNet  Google Scholar 

  13. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    MathSciNet  Google Scholar 

  14. Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43(1), 87–101 (2001)

    MathSciNet  Google Scholar 

  15. Ding, Y., Xiao, Y., Li, J.: A class of conjugate gradient methods for convex constrained monotone equations. Optimization 66(12), 2309–2328 (2017)

    MathSciNet  Google Scholar 

  16. Dirkse, S.P., Ferris, M.C.: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–345 (1995)

    Google Scholar 

  17. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–2013 (2002)

    MathSciNet  Google Scholar 

  18. Figueiredo, M., Nowak, R., Wright, S.J.: Gradient Projection for Sparse Reconstruction, Application to Compressed Sensing and Other Inverse Problems, pp. 586–597. IEEE J-STSP IEEE Press, Piscataway, NJ (2007)

    Google Scholar 

  19. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    MathSciNet  Google Scholar 

  20. Fletcher, R.: Practical Method of Optimization. Volume 1: Unconstrained Optimization, 2nd ed. Wiley, New York (1997)

  21. Ford, J.A., Narushima, Y., Yabe, N.: Multi-step nonlinear conjugate gradient methods for unconstrained minimization. Comput. Optim. Appl. 40, 191–216 (2008)

    MathSciNet  Google Scholar 

  22. Gaohang, Y., Shanzhou, N., Jianhua, M.: Multivariate spectral gradient projection method for nonlinear monotone equations with convec constraints. Jimo. 9(1), 117–129 (2013)

    Google Scholar 

  23. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)

    MathSciNet  Google Scholar 

  24. Halilu, A.S., Majumder, A., Waziri, M.Y., Ahmed, K., Awwal, A.M.: Motion control of the two joint planar robotic manipulators through accelerated Dai–Liao method for solving system of nonlinear equations. Eng. Comput. (2021). https://doi.org/10.1108/EC-06-2021-0317

    Article  Google Scholar 

  25. Halilu, A.S., Majumder, A., Waziri, M.Y., Ahmed, K.: Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach. Math. Comput. Simul. (2021). https://doi.org/10.1016/j.matcom.2021.03.020

    Article  MathSciNet  Google Scholar 

  26. Halilu, A.S., Majumder, A., Waziri, M.Y., Awwal, A.M., Ahmed, K.: On solving double direction methods for convex constrained monotone nonlinear equations with image restoration. Comput. Appl. Math. 40, 1–27 (2021)

    MathSciNet  Google Scholar 

  27. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    MathSciNet  Google Scholar 

  28. Ibrahim, A.H., Kumam, P., Abubakar, A.B., Abdullahi, M.S., Mohammad, H.: A Dai-Liao-type projection method for monotone nonlinear equations and signal processing. Demonstratio Mathematica 55, 978–1013 (2022)

    MathSciNet  Google Scholar 

  29. Ivanov, B., Milanovic, G.V., Stanimirovic, P.S.: Accelerated Dai–Liao projection method for solving systems of monotone nonlinear equations with application to image deblurring. J. Glob. Optim. (2022). https://doi.org/10.1007/s10898-022-01213-4

    Article  Google Scholar 

  30. Kiri, A.I., Waziri, M.Y., Ahmed, K.: A modified Liu–Storey scheme for nonlinear systems with an application to image recovery. Iran. J. Numer. Anal. Optim. (2022). https://doi.org/10.22067/ijnao.2022.75413.1107

  31. Koorapetse, M., Kaelo, P., Lekoko, S., Diphofu, T.: A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing. Appl. Numer. Math. 165, 431–441 (2021)

    MathSciNet  Google Scholar 

  32. La cruz, W., Martinez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: theory and experiments. Technical Report RT-04-08 (2004)

  33. La Cruz, W.: A Spectral algorithm for large-scale systems of nonlinear monotone equations. Numer. Algor. (2017). https://doi.org/10.1007/s1107s-017-0299-8

    Article  MathSciNet  Google Scholar 

  34. Liu, J.K., Li, S.J.: A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl. 70(10), 2442–2453 (2015)

    MathSciNet  Google Scholar 

  35. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms. Part 1: Theory. J. Optim. Theory Appl. 69, 129–137 (1991)

    MathSciNet  Google Scholar 

  36. Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 202, 523–539 (2007)

    MathSciNet  Google Scholar 

  37. Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22, 333–361 (1987)

    MathSciNet  Google Scholar 

  38. Narushima, Y., Yabe, H.: A survey of sufficient descent conjugate gradient methods for unconstrained optimization. SUT J. Math. 50(2), 167–203 (2014)

    MathSciNet  Google Scholar 

  39. Pang, J.S.: Inexact Newton methods for the nonlinear complementarity problem. Math. Program 36, 54–71 (1986)

    MathSciNet  Google Scholar 

  40. Perry, A.: A modified conjugate gradient algorithm. Oper. Res. Tech. Notes 26(6), 1073–1078 (1978)

    MathSciNet  Google Scholar 

  41. Polak, E., Ribi\(\acute{e}\)re, G.: Note Sur la convergence de directions conjugèes. Rev. Francaise Informat. Recherche Operationelle, 3e Ann\(\grave{e}\)e. 16, 35–43 (1969)

  42. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)

    Google Scholar 

  43. Raymond, H.C., Ho, C., Nikolova, M.: Salt-and-pepper noise re moval by median type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Google Scholar 

  44. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355–369. Kluwer Academic Publishers, New York (1998)

    Google Scholar 

  45. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)

    Google Scholar 

  46. Waziri, M.Y., Ahmed, K., Halilu, A.S., Sabi’u, J.: Two new Hager-Zhang iterative schemes with improved parameter choices for monotone nonlinear systems and their applications in compressed sensing. Rairo Oper. Res. (2021). https://doi.org/10.1051/ro/2021190

    Article  Google Scholar 

  47. Waziri, M.Y., Ahmed, K., Sabi’u, J.: A Dai–Liao conjugate gradient method via modified secant equation for system of nonlinear equations. Arab. J. Math. 9, 443–457 (2020)

    MathSciNet  Google Scholar 

  48. Waziri, M.Y., Ahmed, K., Sabi’u, J., Halilu, A.S.: Enhanced Dai–Liao conjugate gradient methods for systems of monotone nonlinear equations. SeMA J. 78, 15–51 (2020)

    MathSciNet  Google Scholar 

  49. Xiao, Y., Wang, Q., Hu, Q.: Non-smooth equations based method for \(\ell _1-norm\) problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74(11), 3570–3577 (2011)

    Google Scholar 

  50. Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405(1), 310–319 (2013)

    MathSciNet  Google Scholar 

  51. Yabe, H., Takano, M.: Global convergence properties of nonlinear conjugate gradient methods with modified secant condition. Comput. Optim. Appl. 28, 203–225 (2004)

    MathSciNet  Google Scholar 

  52. Yin, J., Jian, J., Jiang, X., Liu, M., Wang, L.: A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer. Algor. (2021). https://doi.org/10.1007/s11075-020-01043-z

    Article  MathSciNet  Google Scholar 

  53. Yu, N.: Gradient methods for minimizing composite functions. Math. Program. 140(2), 125–161 (2013)

    MathSciNet  Google Scholar 

  54. Zhang, K., Liu, H., Liu, Z.: A new Dai–Liao conjugate gradient method with optimal parameter choice. Numer. Funct. Anal. Optim. (2018). https://doi.org/10.1080/01630563.2018.1535506

    Article  Google Scholar 

  55. Zhang, L., Zhou, W., Li, D.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22, 697–711 (2007)

    MathSciNet  Google Scholar 

  56. Zhou, W., Zhang, L.: A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim. Methods Softw. 21, 707–714 (2006)

    MathSciNet  Google Scholar 

  57. Zhou, W.J., Li, D.H.: Limited memory BFGS methods for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the comments and suggestions offered by the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabiru Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alexander Vladimirovich Gasnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The appendix contains six examples of the operator F, their dimensions, and six initial guesses.

The following are six examples of the operator F used in the experiment:

Example 1

Nonsmooth function obtained from [33].

\(F_i(x)=2x_i-\sin {|x_i|}\), \(\quad i=1,2, \dots ,n\),

where \({\mathcal {C}} ={\mathbb {R}}_+^n\).

Example 2

This is obtained from [57].

\(F_1(x)= 2x_1+\sin {x_1}-1\),

\(F_i(x)= -2x_{i-1}+2x_i+2\sin {x_i}-1\),

\(F_n(x)=2x_n+\sin {x_n}-1\),\(\quad i=2,\dots ,n-1\),

where \({\mathcal {C}} ={\mathbb {R}}_+^n\).

Example 3

Penalty function 1 obtained from [15].

\(F_i(x)=2\pi (x_i-1)+4(\sum _{j=1}^{n}x_j-0.25)x_i, \quad i=1,2,\dots ,n\),

where \(\pi =10^{-5}, \quad {\mathcal {C}} ={\mathbb {R}}_+^n\).

Example 4

Nonsmooth function [50].

\(F_i(x)=x_i-\sin {|x_i-1|}\), \(\quad i=1,2, \dots ,n\),

where \({\mathcal {C}} =\left\{ x\in {\mathbb {R}}^n:\displaystyle \sum _{i=1}^{n}x_i\le n, \quad x_i\ge -1, \quad i=1,2,\dots ,n\right\} .\)

Example 5

This example is obtained from [2].

\(F_1(x)=2.5x_1+x_2-1\),

\(F_i(x)=x_{i-1}+2.5x_{i}+x_{i+1}-1\),

\(F_n(x)=x_{n-1} + 2.5x_n-1, i=2,3,...,n-1\), where \(\mathcal {C} =\mathbb {R}_+^n\)

Example 6

Nonsmooth function obtained from [22].

\(F_i(x)=2x_i-\sin {|x_i-1|}\), \(\quad i=1,2, \dots ,n\),

where \({\mathcal {C}} =\left\{ x\in {\mathbb {R}}^n:\displaystyle \sum _{i=1}^{n}x_i\le n, \quad x_i\ge -1, \quad i=1,2,\dots ,n\right\} \).

A total of 18 experiments were conducted for each of the six examples of the operator F with dimensions \(10^4\), \(5\times 10^4\), \(10^5\), and the following initial guesses:

\(x_0^{1}\)\( =\left( \frac{1}{n},\frac{2}{n},...,1\right) ^T\), \(x_0^{2}\) \(=\left( \frac{3}{2},\frac{1}{2},...,-\frac{[(-1)^n-2]}{2}\right) ^T\), \(x_0^{3}\) \(=\left( \frac{1}{3},\frac{1}{3^2},...,\frac{1}{3^n}\right) ^T\),

\(x_0^{4}\) \(=\left( \frac{n-1}{n},\frac{n-2}{n},...,0\right) ^T\), \(x_0^{5}\) \(=\left( 3,1,...,-2\frac{[(-1)^n-2]}{2}\right) ^T\), \(x_0^{6}\)\(=\left( 1-\frac{1}{n},1-\frac{2}{n},...,0\right) ^T\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, K., Waziri, M.Y., Murtala, S. et al. On a Scaled Symmetric Dai–Liao-Type Scheme for Constrained System of Nonlinear Equations with Applications. J Optim Theory Appl 200, 669–702 (2024). https://doi.org/10.1007/s10957-023-02281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02281-6

Keywords

Mathematics Subject Classification

Navigation