Skip to main content
Log in

Tensor Complementarity Problems with Finite Solution Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we first extend the concept of non-degenerate matrices to tensors and we then study the finiteness properties of the solution set of non-degenerate tensor complementarity problems. When the involving tensor in the tensor complementarity problem is a positive linear combination of rank-one symmetric tensors, we show that the solution set of the tensor complementarity problem is convex if the underlying tensor is positive semidefinite, and the tensor complementarity problem has the globally uniqueness solvable property if the underlying tensor is positive definite. Finally, we prove that a symmetric P tensor with an additional condition has the globally uniqueness solvable property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Huang, Z., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    Article  MathSciNet  Google Scholar 

  2. Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507–520 (2008)

    Article  MathSciNet  Google Scholar 

  4. Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  6. Comon, P., Golub, G., Lim, L.-H., Murrain, B.: Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)

    Article  MathSciNet  Google Scholar 

  8. Ding, W., Luo, Z., Qi, L.: P-Tensors, \(P_0\)-Tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)

    Article  MathSciNet  Google Scholar 

  9. Facchinei, F., Pang, J.-S.: Finite Dimensional Variational Inequality and Complementarity Problems, vol. I and II. Springer, Berlin (2003)

    MATH  Google Scholar 

  10. Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: Z-tensors and complementarity problems (2015). arXiv:1510.07933

  11. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. Ser. B 48, 161–220 (1990)

    Article  MathSciNet  Google Scholar 

  12. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)

    Article  Google Scholar 

  13. Hu, S., Huang, Z.-H., Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013)

    Article  MathSciNet  Google Scholar 

  14. Huang, Z.H., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  15. Huang, Z.H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  16. Kolda, T.G., Bader, B.D.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  17. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  18. Qi, L., Huang, Z.H.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  19. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

    Book  Google Scholar 

  20. Shao, J., You, L.: On some properties of three different types of triangular blocked tensors. Linear Algebra Appl. 511, 110–140 (2016)

    Article  MathSciNet  Google Scholar 

  21. Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)

    Article  MathSciNet  Google Scholar 

  22. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

    Article  MathSciNet  Google Scholar 

  23. Song, Y., Yu, G.: Properties of solution set of tensor complementarity problems. J. Optim. Theory Appl. 170, 85–96 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the anonymous referees for their useful comments and valuable suggestions which helped us to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Palpandi.

Additional information

Communicated by Liqun Qi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palpandi, K., Sharma, S. Tensor Complementarity Problems with Finite Solution Sets. J Optim Theory Appl 190, 951–965 (2021). https://doi.org/10.1007/s10957-021-01917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01917-9

Keywords

Mathematics Subject Classification

Navigation