Skip to main content
Log in

Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The Barzilai and Borwein gradient method has received a significant amount of attention in different fields of optimization. This is due to its simplicity, computational cheapness, and efficiency in practice. In this research, based on spectral analysis techniques, root-linear global convergence for the Barzilai and Borwein method is proven for strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. The applicability of these results is demonstrated for two optimization problems governed by partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13(3), 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, Y.H., Liao, L.Z.: \(R\)-Linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Math. Program. 103(3, Ser. A), 541–559 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fletcher, R.: On the Barzilai-Borwein method. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and Control with Applications, Applied Optimization, vol. 96, pp. 235–256. Springer, New York (2005)

    Chapter  Google Scholar 

  6. Hall, B.C.: Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267. Springer, New York (2013)

    Book  Google Scholar 

  7. Werner, D.: Funktionalanalysis, extended edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  8. Molina, B., Raydan, M.: Preconditioned Barzilai–Borwein method for the numerical solution of partial differential equations. Numer. Algorithms 13(1–2), 45–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Axelsson, O., Karátson, J.: On the rate of convergence of the conjugate gradient method for linear operators in Hilbert space. Numer. Funct. Anal. Optim. 23(3–4), 285–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Axelsson, O., Karátson, J.: Mesh independent superlinear PCG rates via compact-equivalent operators. SIAM J. Numer. Anal. 45(4), 1495–1516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herzog, R., Sachs, E.: Superlinear convergence of Krylov subspace methods for self-adjoint problems in Hilbert space. SIAM J. Numer. Anal. 53(3), 1304–1324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18(1), 1–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd edn. Springer, Cham (2017)

    Google Scholar 

  14. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  15. Lasiecka, I., Triggiani, R.: Sharp regularity theory for second order hyperbolic equations of Neumann type. I. \(L_2\) nonhomogeneous data. Ann. Mat. Pura Appl. (4) 157, 285–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lasiecka, I., Triggiani, R.: Regularity theory of hyperbolic equations with nonhomogeneous Neumann boundary conditions. II. General boundary data. J. Differ. Equ. 94(1), 112–164 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49(2), 830–858 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.L.: Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, New York (1971)

  19. Mordukhovich, B.S., Raymond, J.P.: Neumann boundary control of hyperbolic equations with pointwise state constraints. SIAM J. Control Optim. 43(4), 1354–1372, (2004/2005). (Electronic)

  20. Tröltzsch, F., Volkwein, S.: The SQP method for control constrained optimal control of the Burgers equation. ESAIM Control Optim. Calc. Var. 6, 649–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Volkwein, S.: Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18(2), 115–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Curtis, F.E., Guo, W.: Handling nonpositive curvature in a limited memory steepest descent method. IMA J. Numer. Anal. 36(2), 717–742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Asmundis, R., Di Serafino, D., Hager, W.W., Toraldo, G., Zhang, H.: An efficient gradient method using the Yuan steplength. Comput. Optim. Appl. 59(3), 541–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 33(4), 1416–1435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. 318, 176–195 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Fletcher, R.: A limited memory steepest descent method. Math. Program. 135(1–2, Ser. A), 413–436 (2012)

  27. Yuan, Y.X.: A new stepsize for the steepest descent method. J. Comput. Math. 24(2), 149–156 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Zheng, Y., Zheng, B.: A new modified Barzilai–Borwein gradient method for the quadratic minimization problem. J. Optim. Theory Appl. 172(1), 179–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Karl Kunisch was supported the ERC Advanced Grant 668998 (OCLOC) under the EU’s H2020 research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Azmi.

Additional information

Communicated by Roland Herzog.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmi, B., Kunisch, K. Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces. J Optim Theory Appl 185, 819–844 (2020). https://doi.org/10.1007/s10957-020-01677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01677-y

Keywords

Mathematics Subject Classification

Navigation