Skip to main content
Log in

How to Select a Solution in Generalized Nash Equilibrium Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose a new solution concept for generalized Nash equilibrium problems. This concept leads, under suitable assumptions, to unique solutions, which are generalized Nash equilibria and the result of a mathematical procedure modeling the process of finding a compromise. We first compute the favorite strategy for each player, if he could dictate the game, and use the best response on the others’ favorite strategies as starting point. Then, we perform a tracing procedure, where we solve parametrized generalized Nash equilibrium problems, in which the players reduce the weight on the best possible and increase the weight on the current strategies of the others. Finally, we define the limiting points of this tracing procedure as solutions. Under our assumptions, the new concept selects one reasonable out of typically infinitely many generalized Nash equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)

    Article  MATH  Google Scholar 

  2. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 1755, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dreves, A.: Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets. Math. Methods Oper. Res. 80, 139–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dreves, A.: Computing all solutions of linear generalized Nash equilibrium problems. Math. Methods Oper. Res. 85(2), 207–221 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave \(N\)-person games. Econometrica 33, 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Harsanyi, J.C.: The tracing procedure: a Bayesian approach to defining a solution for \(n\)-person noncooperative games. Int. J. Game Theory 4, 61–94 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harsanyi, J.C.: A solution concept for \(n\)-person noncooperative games. Int. J. Game Theory 5, 211–225 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  9. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dreves, A.: Uniqueness for quasi-variational inequalities. Set-Valued Var. Anal. 24, 285–297 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  13. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, Springer, New York (2003)

    MATH  Google Scholar 

  14. Morgan, J., Scalzo, V.: Variational stability of social equilibria. Int. Game Theory Rev. 10, 17–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15, 591–603 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dreves, A., Kanzow, C.: Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems. Comput. Optim. Appl. 50, 23–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Global Optim. 53, 587–614 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48, 423–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dreves, A.: Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems. Dissertation, University of Würzburg (2012), available online at http://opus.bibliothek.uni-wuerzburg.de/volltexte/2012/6982

  22. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Dreves.

Additional information

Communicated by Vladimir Veliov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreves, A. How to Select a Solution in Generalized Nash Equilibrium Problems. J Optim Theory Appl 178, 973–997 (2018). https://doi.org/10.1007/s10957-018-1327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1327-0

Keywords

Mathematics Subject Classification

Navigation