Skip to main content
Log in

An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tsong, T.: Electroporation of cell membranes. Biophys. J. 60(2), 297–306 (1991)

    Article  Google Scholar 

  2. Weber, S., Wang, M., Orwar, O., Olofsson, J.: Single-cell electroporation. Anal. Bioanal. Chem. 397(8), 3235–3248 (2010)

    Article  Google Scholar 

  3. Hamilton, W., Sale, A.: Effects of high electric fields on microorganisms: II. Mechanism of action of lethal effect. Biochim. Biophys. Acta 148(3), 789–800 (1967)

    Article  Google Scholar 

  4. Haas, K., Sin, W., Javaherian, A., Li, Z., Cline, H.: Single-cell electroporation for gene transfer in vivo. Neuron 29(3), 583–591 (2001)

    Article  Google Scholar 

  5. Nagayama, S., Zeng, S., Xiong, W., et al.: In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits. Neuron 53(6), 789–803 (2007)

    Article  Google Scholar 

  6. Nevian, T., Helmchen, F.: Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454(4), 675–688 (2007)

    Article  Google Scholar 

  7. Gabriel, B., Teissie, J.: Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of chinese hamster ovary cells. Biochim. Biophys. Acta 1266(2), 171–8 (1995)

    Article  Google Scholar 

  8. Schwarz, D., Kollo, M., Bosch, C., Feinauer, C., Whiteley, I., Margrie, T., Cutforth, T., Schaefer, A.: Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes. Nat. Commun. 9, 183 (2018)

    Article  Google Scholar 

  9. Langford, R.: Focused ion beams techniques for nanomaterials characterization. Microsc. Res. Tech. 69(7), 538–549 (2006)

    Article  Google Scholar 

  10. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Springer (2009). http://www.springer.com/de/book/9781402088384

  11. Fursikov, A.: Optimal control of distributed systems. Theory and applications. Transl. from the Russian by Tamara Roszkovskaya. Translations of Mathematical Monographs, vol. 187. American Mathematical Society, Providence (2000)

  12. Luenberger, D.G.: Optimization by Vector Space Methods. Decision and Control. Wiley, New York (1969)

    MATH  Google Scholar 

  13. Babuška, I., Whiteman, J.R., Strouboulis, T.: Finite Elements. An Introduction to the Method and Error Estimation. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  14. Verfürth, R.: A posteriori error estimation techniques for nonlinear elliptic and parabolic PDE’s. Rev. Eur. Élém. Finis 9(4), 377–402 (2000)

    MATH  Google Scholar 

  15. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Switzerland (2003)

    Book  MATH  Google Scholar 

  17. Carraro, T., Goll, C.: A goal-oriented error estimator for a class of homogenization problems. J. Sci. Comput. 71(3), 1169–1196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Richter, T.: Goal-oriented error estimation for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 223–24, 28–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Braack, M., Ern, A.: A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Becker, R., Vexler, B.: A posteriori error estimation for finite element discretization of parameter identification problems. Numer. Math. 96(3), 435–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Becker, R., Vexler, B.: Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations. J. Comput. Phys. 206(1), 95–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hintermüller, M., Hoppe, R.H.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52(3), 1832–1861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48(8), 5468–5487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wollner, W.: A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints. Comput. Optim. Appl. 47(1), 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyer, C., Rademacher, A., Wollner, W.: Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37(2), A918–A945 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ziems, J.C., Ulbrich, S.: Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bernardi, C., Dakroub, J., Mansour, G., Sayah, T.: A posteriori analysis of iterative algorithms for a nonlinear problem. J. Sci. Comput. 65(2), 672–697 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rannacher, R., Vihharev, J.: Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. J. Numer. Math. 21(1), 23–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ern, A., Vohralík, M.: Adaptive inexact newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Amrein, M., Wihler, T.P.: Fully adaptive Newton–Galerkin methods for semilinear elliptic partial differential equations. SIAM J. Sci. Comput. 37(4), A1637–A1657 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Papež, J., Strakoš, Z., Vohralík, M.: Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numerische Mathematik (published online) (2017). https://doi.org/10.1007/s00211-017-0915-5

    MATH  Google Scholar 

  35. Arioli, M., Liesen, J., Midlar, A., Strako, Z.: Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems. GAMM-Mitteilungen 36(1), 102–129 (2013)

    Article  MathSciNet  Google Scholar 

  36. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  37. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis—Modélisation Mathématique et Analyse Numérique 8(R2), 129–151 (1974). http://eudml.org/doc/193255

  38. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Richter, T.: A posteriori error estimation and anisotropy detection with the dual-weighted residual method. Int. J. Numer. Methods Fluids 62(1), 90–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rannacher, R.: Adaptive finite element discretization of flow problems for goal-oriented model reduction. In: Choi, H., Choi, H., Yoo, J. (eds.) Computational Fluid Dynamics 2008, pp. 31–45. Springer, Berlin (2009)

    Chapter  Google Scholar 

  41. Carraro, T., Heuveline, V., Rannacher, R.: Determination of kinetic parameters in laminar flow reactors. I. Theoretical aspects. In: Jäger, W., Rannacher, R., Warnatz, J. (eds.) Reactive Flows, Diffusion and Transport. Springer, New York (2007)

    Google Scholar 

  42. Becker, R., Braack, M., Meidner, D., Rannacher, R., Vexler, B.: Adaptive finite element methods for PDE-constrained optimal control problems. In: Jäger, W., Rannacher, R., Warnatz, J. (eds.) Reactive Flows, Diffusion and Transport, pp. 177–205. Springer, Berlin (2007)

    Chapter  Google Scholar 

  43. Richter, T.: Parallel multigrid method for adaptive finite elements with application to 3D flow problems. Ph.D. thesis, Mathematisch-Naturwissenschaftliche Gesamtfakultät, Universität Heidelberg (2005)

  44. Bertsekas, D.P.: Enlarging the region of convergence of Newton’s method for constrained optimization. J. Optim. Theory Appl. 36(2), 221–252 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  46. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Walther, A., Griewank, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, chap. 7, pp. 181–202. Chapman-Hall CRC Computational Science (2012)

  48. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Deuflhard, P., Weiser, M.: Adaptive Numerical Solution of PDEs. Walter de Gruyter & Co., Hawthorne (2012)

    Book  MATH  Google Scholar 

  50. Carraro, T., Wetterauer, S.: On the implementation of the eXtended finite element method (XFEM) for interface problems. Arch. Numer. Softw. 4(2), 1–23 (2016)

    Google Scholar 

  51. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cutfem: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Frei, S., Richter, T.: A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52(5), 2315–2334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Appelbaum, L., Ben-David, E., Faroja, M., Nissenbaum, Y., Sosna, J., Goldberg, S.N.: Irreversible electroporation ablation: creation of large-volume ablation zones in in vivo porcine liver with four-electrode arrays. Radiology 270(2), 416–424 (2014)

    Article  Google Scholar 

  54. Griffiths, D.J.: Introduction to Electrodynamics, 4th edn. Pearson, London (2012)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Andreas T. Schaefer for generous collaborative support and fruitful discussions of this work. T.C. was supported by the Deutsche Forschungsgemeinschaft (DFG) through the project CA 633/2-1. The work of S.F. was supported by the DFG Research Scholarship FR3935/1-1. S.D. had a financial support provided by Klaus Tschira Stiftung gGmbH, Project No.00.265.2015. We thank the anonymous reviewers and the editorial board of the journal for their valuable comments and effort to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Carraro.

Additional information

Communicated by Asen L. Dontchev.

Appendix

Appendix

In Appendix, we derive the flux function g, the admissible set \(Q_{\text {ad}}\) and their dependence on the sizes \(s_k\) and positions \(m_k\) of the k-th hole, \(k=1\ldots p\). The fixed size of the hole at the tip is denoted by \(s_0\). The remaining holes are numbered from bottom (tip) to the top. In order to derive the flux function g, we assume that the holes do not overlap and that they remain above the tip of the pipette and below the upper boundary of the simulation domain. Moreover, due to fabrication reasons a minimum distance \(\delta _1>0\) has to remain between them. In formulas, this means that

$$\begin{aligned} y_{\text {tip}} + \delta _1&\le m_1 - \frac{s_1}{2},\quad m_k+ \frac{s_k}{2} + \delta _1 \le m_{k+1} -\frac{s_{k+1}}{2} \quad k=1,\dots ,p-1,\quad m_p + \frac{s_p}{2} \le y_{\text {top}} \end{aligned}$$
(43)

where \(y_{\text {tip}}=0\) and \(y_{\text {top}}\) denote the vertical coordinate of the tip and the upper boundary of the simulation domain, respectively. Moreover, we assume that the sizes of the holes are bounded below by a constant \(\delta _2>0\)

$$\begin{aligned} s_k \ge \delta _2\quad \text {for } k=1,\dots ,p, \end{aligned}$$
(44)

which is again due to fabrication limitations. The admissible set is defined by

$$\begin{aligned} Q_{\text {ad}} := \left\{ q:=(m_1,\dots ,m_p,s_1,\dots ,s_p) \in {\mathbb {R}}^{2p}\; \big | \; q \text { fulfills } (43) \text { and } (44) \right\} . \end{aligned}$$
(45)

Note that by this definition, \(Q_{\text {ad}}\) is closed and bounded. A rough bound for the sizes \(s_k\) is given by \(0 \le s_k < y_{\text {top}}-y_{\text {tip}}\) and for the positions \(m_k\) by \(y_{\text {tip}}< m_k < y_{\text {top}},\, i=1,\ldots ,p\).

Fig. 12
figure 12

Scheme of the electric circuit around the micropipette

A scheme of the electric circuit is shown in Fig. 12. For simplicity, we present only the case of a micropipette with two holes on each side. The derivation of corresponding formulas for a different number of holes is analogous. We assume that a fixed current \({\overline{I}}\) is applied at the top of the micropipette and calculate the current \(I_k\) that flows out of the micropipette at the holes \(k=0,\dots ,2\). The flux function g at hole k is then given by the current density \(J_k\)

$$\begin{aligned} g|_{\varGamma _k}= J_k = \frac{I_k}{|\varGamma _k|} \quad \text { on } \varGamma _k. \end{aligned}$$

The micropipette is filled with a conducting liquid. We assign a specific resistance \(R_j\), \(j=0, \dots , 3\), to each of the parts of the micropipette. The resistances of the conducting liquid in the small holes on the left and right in between the isolating wall are denoted by \(R_1\) and \(R_2\), the resistances of the parts in the interior of the micropipette by \(R_3\) and \(R_0\). Denoting the thickness of the wall by d, the resistance of a hole is given by

$$\begin{aligned} R_k = \rho \frac{d}{\pi s_k^2} \quad (k=1,2), \end{aligned}$$

where \(\rho = 1/\sigma \) is the electrical resistivity. To calculate the resistance of the conical part below \(x_2\), we introduce the notation a(x) for the area inside the micropipette at position x, see Fig. 13. The area \(a_0=a(0)\) of \(\varGamma _0\) at the tip of the micropipette is given by \(a(0)=\pi s_0^2\), the area \(a_1=a(m_1)\) of \(\varGamma _1\) at the first hole by

$$\begin{aligned} a(m_1)=\pi (s_0 + \tan (\theta )m_1)^2, \end{aligned}$$

where \(\theta \) is the inclination angle of the micropipette. The resistance of the conical part below \(x_2\) is then given by (see e.g., [54])

$$\begin{aligned} R_0 = \rho \int _0^{m_1} \frac{1}{a(x)^2} \mathrm{d}x = \frac{\rho }{\pi } \mathrm {cot} (\theta ) \left( \frac{1}{s_0} -\frac{1}{s_0 + m_1 \tan (\theta )}\right) . \end{aligned}$$
Fig. 13
figure 13

Scheme of the tip region of the micropipette including area elements to calculate the resistances

Similarly, we get for the resistance \(R_3\) of the part between the points \(x_1\) and \(x_2\)

$$\begin{aligned} R_3 = \frac{\rho }{\pi } \mathrm {cot} (\theta ) \left( \left( s_0 + m_1 \mathrm{tan}(\theta )\right) ^{-1} - \left( s_0 + m_2 \mathrm{tan}(\theta )\right) ^{-1}\right) . \end{aligned}$$

The voltage difference between point \(x_2\) and a point \({\hat{x}}\) far off the micropipette can be used to derive the following formula by using Ohm’s law (see Fig. 12)

$$\begin{aligned} I_2 \cdot R_2 = I_3 \cdot R_{0,1,3} \quad (= u(x_2) - u({\hat{x}}) ). \end{aligned}$$
(46)

Here, \(R_{0,1,3}\) stands for the total resistance of the parts \(R_0\), \(R_1\) and \(R_3\) which is given by

$$\begin{aligned} R_{0,1,3} = R_3 + (R_0^{-1} + 2 R_1^{-1})^{-1}. \end{aligned}$$

Furthermore, by Kirchhoff’s current law the current \({\overline{I}}\) splits at point \(x_2\) to

$$\begin{aligned} {\overline{I}} = I_3 + 2 I_2. \end{aligned}$$
(47)

(46) and (47) can be solved for the two unknowns \(I_2\) and \(I_3\). In the same way, it holds at point \(x_1\)

$$\begin{aligned} R_0 \cdot I_0 = R_1 \cdot I_1 \end{aligned}$$
(48)

and

$$\begin{aligned} I_3 = 2 I_1 + I_0. \end{aligned}$$
(49)

Given \(I_3\), (48) and (49) define \(I_0\) and \(I_1\). Inserting the formulas for the resistances, a direct calculation results in

$$\begin{aligned} I_0&= {\overline{I}} \frac{R_1 R_2}{\left( R_2 + 2 R_{0,1,3} \right) \left( R_1 + 2 R_0\right) } = {\overline{I}} \frac{\left( s_0\,c + m_1 \right) ^2 \left( s_0\,c + m_2 \right) d^2 \, s_0}{T(m,s)},\nonumber \\ I_1&= {\overline{I}} \frac{R_0 R_2}{\left( R_2 + 2 R_{0,1,3} \right) \left( R_1 + 2 R_0\right) } = {\overline{I}} \frac{\left( s_0\,c + m_1 \right) \left( s_0\,c + m_2 \right) d \, c \, m_1 \, s_1^2}{T(m,s)},\nonumber \\ I_2&= {\overline{I}} \frac{R_{0,1,3}}{R_2 + 2 R_{0,1,3}} = {\overline{I}} \frac{\left( m_2 d s_0^2 c^2 + 2 c m_2 d s_0 m_1+ 2 m_2 s_1^2 c^2 m_1-2 s_1^2 c^2 m_1^2+d m_1^2 m_2 \right) \,c \, s_2^2}{T(m,s)} \end{aligned}$$
(50)

with \(c:={cot} (\theta )\) and

$$\begin{aligned} T(m,s)&={{ s_0}}^{4} c^{3}{d}^{2}+2\,{{ s_0}}^{3} c^{2}{d}^{2}{} { m_1}+2\,d{{ s_0}} ^{2} c^{3}{} { m_1}\,{{ s_1 }}^{2}+{{ s_0}}^{3} c ^{2}{ m_2}\,{d}^{2}+2\,{{ s_0}}^{2}c { m_2} \,{d}^{2}{} { m_1}\\&\quad +2\,d{ s_0}\,c^{2}{} { m_2}\,{ m_1}\,{{ s_1}}^{2}+ {{ m_1}}^{2}{{ s_0 }}^{2}c {d}^{2}+2\,d{{ m_1}}^{2}{} { s_0}\, c ^{2}{{ s_1}}^{2}+{{ m_1}}^{2}{} { m_2}\,{d}^{2}{} { s_0} \\&\quad +2\,d{{ m_1}}^{2}{} { m_2}\, c{{ s_1}}^{2}+2 c^{3}{{ s_2}}^{2}{} { m_2}\,d{{ s_0}}^{2} +4\, c ^{2}{{ s_2}}^{2}{} { m_2} \,d{ s_0}\,{ m_1}\\ {}&\quad +\,4\, c^{3}{{ s_2}}^{2}({ m_2}-{ m_1})\,{ m_1}\,{{ s_1}}^{2} +2\,c {{ m_1}}^{2}d{{ s_2}}^{2}{ m_2} . \end{aligned}$$

As we use a two-dimensional setting, the size of \(\varGamma _k\) is given by \(|\varGamma _k|=s_k\). The flux function at hole k is thus given by

$$\begin{aligned} J_k = \frac{I_k}{s_k} \quad \text { on } \varGamma _k. \end{aligned}$$
(51)

As the parameters \(s_0, d\) and c as well as the variables \(m_k\) and \(s_k\) (\(k=1,2\)) are strictly positive, the denominator T(ms) in the definition of \(I_k\) is positive for all values of \((m_1, m_2, s_1, s_2) \in {\mathbb {R}}_+^4\) with \(m_2-m_1\ge 0\). The denominator (\(s_k\)) in the definition of \(J_k\) (51) cancels out with the nominator in (50), such that \(J_k\) has no singularities for \(m_2\ge m_1\). Therefore, \(J_k(q)\) is a smooth function on \(Q_{\text {ad}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carraro, T., Dörsam, S., Frei, S. et al. An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design. J Optim Theory Appl 177, 498–534 (2018). https://doi.org/10.1007/s10957-018-1242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1242-4

Keywords

Mathematics Subject Classification

Navigation