Skip to main content
Log in

Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider primal–dual interior point methods where the linear system arising at each iteration is formulated in the reduced (augmented) form and solved approximately. Focusing on the iterates close to a solution, we analyze the accuracy of the so-called inexact step, i.e., the step that solves the unreduced system, when combining the effects of both different levels of accuracy in the inexact computation and different processes for retrieving the step after block elimination. Our analysis is general and includes as special cases sources of inexactness due either to roundoff and computational errors or to the iterative solution of the augmented system using typical procedures. In the roundoff case, we recover and extend some known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellavia, S.: Inexact interior point method. J. Optim. Theory Appl. 96, 109–121 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baryamureeba, V., Steihaug, T.: On the convergence of an inexact primal-dual interior point method for linear programming. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Proceedings of the 5th International Conference on Large-Scale Scientific Computing, Lecture Notes in Computer Science 3743, pp. 629–637. Springer, Berlin (2006)

  3. D’Apuzzo, M., Simone, V.D., di Serafino, D.: On mutual impact of linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45, 283–310 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic programming. SIAM J. Optim. 23, 1510–1527 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rees, T.: The iterative solution of linear systems arising in the primal-dual interior point algorithm for linear programming. RAL Preprint RAL-P-2016-007 (2016)

  6. Armand, P., Benoist, J., Dussault, J.: Local path-following property of inexact interior methods in nonlinear programming. Comput. Optim. Appl. 52, 209–238 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cafieri, S., D’Apuzzo, M., Simone, V.D., di Serafino, D.: On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems. Comput. Optim. Appl. 38, 27–45 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Durazzi, C., Ruggiero, V.: Global convergence of the Newton interior-point method for nonlinear programming. Comput. Optim. Appl. 120, 199–208 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Al-Jeiroudi, G., Gondzio, J.: Convergence analysis of inexact infeasible interior point method for linear optimization. Optim. Method Softw. 141, 231–247 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Mizuno, S., Jarre, F.: Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computations. Math. Program. 84, 105–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Forsgren, A., Gill, P., Wright, M.: Interior methods for nonlinear optimization. SIAM Rev. 443, 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wright, S.: Primal-Dual Interior-point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  13. Greif, C., Moulding, E., Orban, D.: Bounds on eigenvalues of matrices arising from interior-point methods. SIAM J. Optim. 24, 49–83 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Morini, B., Simoncini, V., Tani, M.: Spectral estimates for unreduced symmetric KKT systems arising from interior point methods. Numer. Linear Algebr. Appl. 23, 776–800 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  15. Forsgren, A., Gill, P., Shinnerl, J.: Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization. SIAM J. Matrix Anal. Appl. 17, 187–211 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Poncelon, D.: Barrier methods for large-scale quadratic programming. Technical Report, SOL 91-2 (1991)

  17. Wright, S.: Stability of augmented system factorizations in interior-point methods. SIAM J. Matrix Anal. Appl. 18, 191–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wright, S.: Effects of finite-precision arithmetic on interior-point methods for nonlinear programming. SIAM J. Optim. 12, 36–78 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wright, S.: Stability of linear equations solvers in interior-point methods. SIAM J. Matrix Anal. Appl. 16, 1287–1307 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  21. Morini, B., Simoncini, V., Tani, M.: A comparison of reduced and unreduced KKT systems arising from interior point methods. Comput. Optim. Appl. 68, 1–27 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wright, M.: Ill-conditioning and computational error in interior methods for nonlinear programming. SIAM J. Optim. 9, 84–111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cafieri, S., D’Apuzzo, M., Simone, V.D., di Serafino, D.: Stopping criteria for inner iterations in inexact potential reduction methods: a computational study. Comput. Optim. Appl. 36, 165–193 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. University of Florida Sparse Matrix Collection, T.: http://www.cise.ufl.edu/research/sparse/matrices/

  25. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28, 149–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liesen, J., Strakos, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press, Oxford (2012)

  28. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  29. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Method Softw. 11, 275–302 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by INdAM-GNCS under the 2016 Project Metodi numerici per problemi di ottimizzazione vincolata di grandi dimensioni e applicazioni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Morini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morini, B., Simoncini, V. Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming. J Optim Theory Appl 175, 450–477 (2017). https://doi.org/10.1007/s10957-017-1170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1170-8

Keywords

Mathematics Subject Classification

Navigation