Skip to main content
Log in

Copositivity Detection of Tensors: Theory and Algorithm

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant. Copositive tensors have found important applications in polynomial optimization, tensor complementarity problems and vacuum stability of a general scalar potential. In this paper, we consider copositivity detection of tensors from both theoretical and computational points of view. After giving several necessary conditions for copositive tensors, we propose several new criteria for copositive tensors based on the representation of the multivariate form in barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is copositive or not. The preliminary numerical results confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 439, 228–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, L., Qi, L., Zhou, G.: \(M\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Qi, L., Song, Y.: An even order symmetric B tensor is positive definite. Linear Algebra Appl. 457, 303–312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, C., Qi, L., Li, Y.: \(MB\)-tensors and \(MB_0\)-tensors. Linear Algebra Appl. 484, 141–153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, C., Li, Y.: Double \(B\) tensors and quasi-double \(B\) tensors. Linear Algebra Appl. 466, 343–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Song, Y.S., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Qi, L.: Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J. Ind. Manag. Optim. 11, 1263–1274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pena, J., Vera, J.C., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. 151, 405–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kannike, K.: Vacuum stability of a general scalar potential of a few fields. Eur. Phys. J. C 76, 324 (2016)

    Article  Google Scholar 

  10. Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. arXiv preprint arXiv:1601.05370 (2016)

  11. Che, M., Qi, L., Wei, Y.: Positive definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Lett. Optim. (2017). doi:10.1007/s11590-016-1104-7

    Google Scholar 

  13. Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, Y., Qi, L.: Necessary and sufficient conditions for copositive tensors. Linear Algebra Appl. 63, 120–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Song, Y., Qi, L.: Eigenvalue analysis of constrained minimization problem for homogeneous polynomials. J. Global Optim. 64, 563–575 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dickinson, P.J.C., Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Comput. Optim. Appl. 57, 403–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sponsel, J., Bundfuss, S., Dür, M.: An improved algorithm to test copositivity. J. Global Optim. 52, 537–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J., Yao, Y.: An algorithm for determining copositive matrices. Linear Algebra Appl. 435, 2784–2792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crouzeix, J.P., Martínez-Legaz, J.E., Seeger, A.: An alternative theorem for quadratic forms and extensions. Linear Algebra Appl. 215, 121–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jüttler, B.: Arbitrarily weak linear convexity conditions formultivariate poynomials. Stud. Sci. Math. Hung. 36, 165–184 (2000)

    MATH  Google Scholar 

  24. Shao, J.Y.: A general product of tensors with applications. Linear Algebra Appl. 439, 2350–2366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Y., Qi, L., Wang, Q.: Computing extreme eigenvalues of large scale Hankel tensors. J. Sci. Comput. 68, 716–738 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the anonymous reviewers for their useful comments and constructive advice. This research was done during the first author’s postdoctoral period in Qufu Normal University. Furthermore, the first author’s work is partially supported by the National Natural Science Foundation of China (Grant No. 11601261) and Natural Science Foundation of Shandong Province (Grant No. ZR2016AQ12). The second author’s work is partially supported by the National Natural Science Foundation of China (Grant No. 11431002), and the third author’s work is partially supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 502111, 501212, 501913 and 15302114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Communicated by Guoyin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Huang, ZH. & Qi, L. Copositivity Detection of Tensors: Theory and Algorithm. J Optim Theory Appl 174, 746–761 (2017). https://doi.org/10.1007/s10957-017-1131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1131-2

Keywords

Mathematics Subject Classification

Navigation