Skip to main content
Log in

Infinite Horizon Sparse Optimal Control

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A class of infinite horizon optimal control problems involving nonsmooth cost functionals is discussed. The existence of optimal controls is studied for both the convex case and the nonconvex case, and the sparsity structure of the optimal controls promoted by the nonsmooth penalties is analyzed. A dynamic programming approach is proposed to numerically approximate the corresponding sparse optimal controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neustadt, L.: A general theory of minimum-fuel space trajectories. SIAM J. Control Optim. 3(2), 317–356 (1965)

    MathSciNet  MATH  Google Scholar 

  2. Ross, I.: Space trajectory optimization and \(L_1\)-optimal control problems. Mod. Astrodyn. 1, 155–188 (2007)

    Article  Google Scholar 

  3. Hájek, O.: \(L_1\)-Optimization in linear systems with bounded controls. J. Optim. Theory Appl. 29(3), 409–436 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, W., Schneider, C.: linear-quadratic control problems with \(L_1\)-control cost. Optim. Control Appl. Methods 36, 512–534 (2015)

    Article  MATH  Google Scholar 

  5. Vossen, G., Maurer, H.: On \(L^1\)-minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27(6), 301–321 (2006)

    Article  MathSciNet  Google Scholar 

  6. Caponigro, M., Fornasier, M., Piccoli, B., Trélat, E.: Sparse stabilization and control of alignment models. Math. Models Methods Appl. Sci. 25(3), 521–564 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stadler, G.: Elliptic optimal control problems with \(L_1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Zuazua, E.: Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62, 311–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casas, E., Clason, C., Kunisch, K.: Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50(4), 1735–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pieper, K., Vexler, B.: A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51(4), 2788–2808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  13. Ito, K., Kunisch, K.: A variational approach to sparsity optimization based on Lagrange multiplier theory. Inverse Probl. 30(1), 015,001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fahroo, F., Ross, I.: Pseudospectral methods for infinite-horizon nonlinear optimal control problems. J. Guid. Control Dynam. 31(4), 927–936 (2008)

    Article  Google Scholar 

  15. Garg, D., Patterson, M., Francolin, C., Darby, C., Huntington, G.T., Hager, W., Rao, A.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)

    Book  MATH  Google Scholar 

  17. Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for the solution of dynamic programming equations. SIAM J. Sci. Comput. 37(1), 181–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalise, D., Kröner, A., Kunisch, K.: Local minimization algorithms for dynamic programming equations. SIAM J. Sci. Comput. 38(3), A1587–A1615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aseev, S., Kryazhimskii, A., Tarasyev, A.: First Order Necessary Optimality Conditions for a Class of Infinite Horizon Optimal Control Problems. IIASA Interim Rept. IR-01-007, Laxemburg, Austria (2001)

  20. Aubin, J.P., Cellina, A.: Differential Inclusions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264. Springer, Berlin (1984). Set-valued maps and viability theory

  21. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia

  22. Clarke, F.H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, vol. 5, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the ERC-Advanced Grant OCLOC “From Open to Closed Loop Optimal Control of PDEs.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Rao.

Additional information

Communicated by Enrique Zuazua.

Appendix

Appendix

The proof of Theorem 3.1 is given as follows.

Proof

Let \((T_k)_{k\in {\mathbb {N}}}\) be an arbitrary sequence of positive numbers with

$$\begin{aligned} T_k<T_{k+1},\quad \forall \,k\in {\mathbb {N}}\ \text {and}\ T_k\rightarrow \infty \ \text {as}\ k\rightarrow \infty . \end{aligned}$$

For each \(k\in {\mathbb {N}}\), consider the following optimal control problems \((P_k)\) defined on the finite time interval \([0,T_k]\):

$$\begin{aligned} \inf _{u\in L^{\infty }(0,T_k;U)} J_k(x,u), \end{aligned}$$
(27)

where

$$\begin{aligned} J_k(x,u)=\int ^{T_k}_0 e^{-\lambda s}\ell (y(s),u(s))\hbox {d}s \end{aligned}$$

and \((y(\cdot ),u(\cdot ))\) satisfies the dynamical system (2). Due to Lemma 3.2, there exists an optimal control \(u_k\) for (27). Denote by \(y_k\) the optimal trajectory corresponding to \(u_k\) and

$$\begin{aligned} \eta _k(s):=\int ^s_0 e^{-\lambda (s'-s)}\ell (y_k(s'),u_k(s'))\hbox {d}s',\quad \forall \,s\in [0,T_k]. \end{aligned}$$

Then \(\eta _k\) is optimal for (8) with the final time \(T_k\). The aim is to construct an admissible control \({\bar{u}}\) defined on the infinite time interval \([0,\infty [\). The corresponding extended state will be denoted by \(({\bar{y}},{\bar{\eta }})\). The construction is described step by step as follows.

Consider at first the sequence \((y_k,\eta _k)_{k\in {\mathbb {N}}}\) on the time interval \([0,T_1]\). By the same arguments as in the proof of Lemma 3.1, there exists a subsequence \((y_{k,1},\eta _{k,1})\) of \((y_k,\eta _k)\) such that

$$\begin{aligned}&(y_{k,1},\eta _{k,1})\rightarrow ({\bar{y}},{\bar{\eta }}) \text { uniformly in } [0,T_1],\ \text {as}\ k\rightarrow \infty ;\\&(\dot{y}_{k,1},\dot{\eta }_{k,1})\rightarrow (\dot{{\bar{y}}},\dot{{\bar{\eta }}}) \text { weakly in } L^1(0,T_1;{\mathbb {R}}^{d+1}),\ \text {as}\ k\rightarrow \infty , \end{aligned}$$

for some \(({\bar{y}},{\bar{\eta }})\) satisfying (9) on \([0,T_1]\). Note that each control \(u_{k,1}\) is an optimal control for a corresponding problem \((P_{n(k,1)})\) of the form (27) for some integer \(n(k,1)\ge 1\) on the time interval \([0,T_{n(k,1)}]\), and each \(\eta _{k,1}\) is optimal for the problem (8) with \(T_{n(k,1)}\).

Now for the second step, consider the sequence \((y_{k,1},\eta _{k,1})_{k\in {\mathbb {N}}}\) on the time interval \([0,T_2]\) for \(k\ge 2\). Analogously to the previous step, there exists \((y_{k,2},\eta _{k,2})\) of \((y_{k,1},\eta _{k,1})\) such that

$$\begin{aligned}&(y_{k,2},\eta _{k,2})\rightarrow ({\bar{y}},{\bar{\eta }}) \text { uniformly in } [0,T_2],\ \text {as}\ k\rightarrow \infty ;\\&(\dot{y}_{k,2},\dot{\eta }_{k,2})\rightarrow (\dot{{\bar{y}}},\dot{{\bar{\eta }}}) \text { weakly in } L^1(0,T_2;{\mathbb {R}}^{d+1}),\ \text {as}\ k\rightarrow \infty , \end{aligned}$$

for \(({\bar{y}},{\bar{\eta }})\) satisfying (9) on \([0,T_2]\). Here \(({\bar{y}},{\bar{\eta }})\) coincides with the one constructed in the previous step on \([0,T_1]\), and it is denoted again by the same symbol. Each control \(u_{k,2}\) is an optimal control for a corresponding problem \((P_{n(k,2)})\) of the form (27) for some integer \(n(k,2)\ge 2\) on the time interval \([0,T_{n(k,2)}]\), and each \(\eta _{k,2}\) is optimal for the problem (8) with \(T_{n(k,2)}\).

By repeating this procedure, we construct \(({\bar{y}},{\bar{\eta }})\) satisfying (9) on the infinite time interval \([0,\infty )\). Simultaneously, we obtain a countable family of \((y_{k,i},\eta _{k,i})\) for \(i,k\in {\mathbb {N}}\), \(k\ge i\). Each \(u_{k,i}\) is an optimal control for problem \((P_{n(k,i)})\) of the form (27) for some integer \(n(k,i)\ge i\) on the time interval \([0,T_{n(k,i)}]\), and each \(\eta _{k,i}\) is optimal for the problem (8) with \(T_{n(k,i)}\). Moreover, for all \(i\in {\mathbb {N}}\),

$$\begin{aligned}&(y_{k,i},\eta _{k,i})\rightarrow ({\bar{y}},{\bar{\eta }}) \text { uniformly in } [0,T_i],\ \text {as}\ k\rightarrow \infty ;\\&(\dot{y}_{k,i},\dot{\eta }_{k,i})\rightarrow (\dot{{\bar{y}}},\dot{{\bar{\eta }}}) \text { weakly in } L^1(0,T_i;{\mathbb {R}}^{d+1}),\ \text {as}\ k\rightarrow \infty , \end{aligned}$$

Let us take the diagonal sequence \((u_{k,k})_{k\in {\mathbb {N}}}\) and denote

$$\begin{aligned} {\tilde{u}}_k=u_{k,k},\ {\tilde{y}}_k=y_{k,k},\ {\tilde{\eta }}_k=\eta _{k,k},\ \text {and}\ n_k=n(k,k),\quad \forall \,k\in {\mathbb {N}}. \end{aligned}$$

Then the following properties hold:

  1. (i)

    \(\forall \,k\in {\mathbb {N}}\), the control \({\tilde{u}}_k\) is defined on the time interval \([0,T_{n_k}]\) with \(n_k\ge k\), \({\tilde{u}}_k\) is an optimal control for the problem \((P_{n_k})\) of the form (27), and \({\tilde{\eta }}_k\) is optimal for the problem (8) with \(T_{n_k}\).

  2. (ii)

    \(\forall \,i\in {\mathbb {N}}\), we have

    $$\begin{aligned}&({\tilde{y}}_k,{\tilde{\eta }}_k) \rightarrow ({\bar{y}},{\bar{\eta }}) \text { uniformly in } [0,T_i]\ \text {as}\ k\rightarrow \infty ,\\&(\dot{{\tilde{y}}}_k,\dot{{\tilde{\eta }}}_k) \rightarrow (\dot{{\bar{y}}},\dot{{\bar{\eta }}})\ \text {weakly in}\ L^1(0,T_i;{\mathbb {R}}^{d+1})\ \text {as}\ k\rightarrow \infty . \end{aligned}$$
  3. (iii)

    There exists \({\bar{u}}\in L^{\infty }(0,\infty ;U)\) such that

    $$\begin{aligned} \dot{{\bar{y}}}(s)=f({\bar{y}}(s),{\bar{u}}(s))\ \text {and}\ \dot{{\bar{\eta }}}(s)\ge \lambda {\bar{\eta }}(s)+\ell ({\bar{y}}(s),{\bar{u}}(s)),\quad \forall \,s\in ]0,\infty [. \end{aligned}$$

We proceed with proving that \({\bar{u}}\) is an optimal control for the problem (1). Arguing by contradiction, if \({\bar{u}}\) is not optimal for (1), there exists \(\varepsilon >0\) and \(({\tilde{y}},{\tilde{u}})\) satisfying (2) such that

$$\begin{aligned} J(x,{\tilde{u}})+\varepsilon < J(x,{\bar{u}}). \end{aligned}$$
(28)

By the assumption (3), there exists \((y^*,u^*)\) satisfying (2) such that

$$\begin{aligned} J(x,u^*)<+\infty . \end{aligned}$$

Since \({\tilde{u}}_k\) is optimal for (\(P_{n_k}\)), we have for any \(k\in {\mathbb {N}}\) that

$$\begin{aligned} J_{n_k}(x,{\tilde{u}}_k)\le J_{n_k}(x,u^*)\le J(x,u^*). \end{aligned}$$

Then for any \(N>0\) and any \(n_k\) with \(T_{n_k}\ge N\),

$$\begin{aligned} \int ^N_0 e^{-\lambda s}\ell ({\tilde{y}}_k(s),{\tilde{u}}_k(s))\hbox {d}s\le J_{n_k}(x,{\tilde{u}}_k)\le J(x,u^*), \end{aligned}$$

and thus

$$\begin{aligned} e^{-\lambda N}{\tilde{\eta }}_k(N)\le J(x,u^*). \end{aligned}$$

By taking \(k\rightarrow \infty \), it holds that

$$\begin{aligned} e^{-\lambda N}{\bar{\eta }}(N)\le J(x,u^*). \end{aligned}$$

We thus obtain,

$$\begin{aligned} \int ^N_0 e^{-\lambda s}\ell ({\bar{y}}(s),{\bar{u}}(s))\hbox {d}s\le e^{-\lambda N}{\bar{\eta }}(N)\le J(x,u^*),\quad \forall \,N>0, \end{aligned}$$

and therefore

$$\begin{aligned} \int ^{\infty }_0 e^{-\lambda s}\ell ({\bar{y}}(s),{\bar{u}}(s))\hbox {d}s\le J(x,u^*). \end{aligned}$$

There exists \(k_1\in {\mathbb {N}}\) such that for any \(k\ge k_1\)

$$\begin{aligned} \int ^{\infty }_{T_{k}}e^{-\lambda s}\ell ({\bar{y}}(s),{\bar{u}}(s))\hbox {d}s<\frac{\varepsilon }{2}. \end{aligned}$$
(29)

Due to the fact that \({\tilde{\eta }}_k\rightarrow {\bar{\eta }}\) uniformly, there exists \(k_2\ge k_1\) such that for all \(k\ge k_2\),

$$\begin{aligned} e^{-\lambda T_{n_{k_1}}}{\bar{\eta }}\left( T_{n_{k_1}}\right) \le e^{-\lambda T_{n_{k_1}}}{\tilde{\eta }}_k\left( T_{n_{k_1}}\right) +\frac{\varepsilon }{2}, \end{aligned}$$

which implies that

$$\begin{aligned} J_{n_{k_1}}(x,{\bar{u}})\le J_{n_{k_1}}(x,{\tilde{u}}_k)+\frac{\varepsilon }{2}. \end{aligned}$$
(30)

Since \({\tilde{u}}_{k_2}\) is optimal for \((P_{n_{k_2}})\),

$$\begin{aligned} J_{n_{k_2}}(x,{\tilde{u}}_{k_2})\le J_{n_{k_2}}(x,{\tilde{u}})\le J(x,{\tilde{u}}). \end{aligned}$$
(31)

Note that \(n_{k_1}\le n_{k_2}\), and thus together with (30) and (31), we have

$$\begin{aligned} J_{n_{k_1}}(x,{\bar{u}})\le & {} J_{n_{k_1}}(x,{\tilde{u}}_{k_2})+\frac{\varepsilon }{2} \le J_{n_{k_2}}(x,{\tilde{u}}_{k_2})+\frac{\varepsilon }{2} \le J(x,{\tilde{u}}) + \frac{\varepsilon }{2}. \end{aligned}$$

Finally, by (29) we deduce that

$$\begin{aligned} J(x,{\bar{u}})= & {} J_{n_{k_1}}(x,{\bar{u}})+ \int ^{\infty }_{T_{n_{k_1}}}e^{-\lambda s}\ell ({\bar{y}}(s),{\bar{u}}(s))\hbox {d}s \\\le & {} J_{n_{k_1}}(x,{\bar{u}})+ \frac{\varepsilon }{2} \le J(x,{\tilde{u}}) + \varepsilon , \end{aligned}$$

which contradicts (28). Hence, \({\bar{u}}\) is an optimal control for (1), which ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalise, D., Kunisch, K. & Rao, Z. Infinite Horizon Sparse Optimal Control. J Optim Theory Appl 172, 481–517 (2017). https://doi.org/10.1007/s10957-016-1016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1016-9

Keywords

Mathematics Subject Classification

Navigation