Skip to main content
Log in

Generalized Derivatives of Differential–Algebraic Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential–algebraic equations embedded. Nonsmooth differential–algebraic equations refers here to semi-explicit differential–algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side functions satisfying Carathéodory-like conditions. Using lexicographic differentiation, an auxiliary nonsmooth differential–algebraic equation system is obtained whose unique solution furnishes the desired parametric sensitivities. More specifically, lexicographic derivatives of solutions of nonsmooth parametric differential–algebraic equations are obtained. Lexicographic derivatives have been shown to be elements of the plenary hull of the Clarke (generalized) Jacobian and thus computationally relevant in the aforementioned algorithms. To accomplish this goal, the lexicographic smoothness of an extended implicit function is proved. Moreover, these generalized derivative elements can be calculated in tractable ways thanks to recent advancements in nonsmooth analysis. Forward sensitivity functions for nonsmooth parametric differential–algebraic equations are therefore characterized, extending the classical sensitivity results for smooth parametric differential–algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima, M., Shindoh, S.: Extensions of Newton and quasi-Newton methods to systems of \(PC^1\) equations. J. Oper. Res. Soc. Jpn. 29, 352–374 (1986)

    Google Scholar 

  2. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Facchinei, F., Fischer, A., Herrich, M.: An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  5. Lemaréchal, C., Strodiot, J.J., Bihain, A.: On a bundle algorithm for nonsmooth optimization. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 4. Academic Press, New York (1981)

    Google Scholar 

  6. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83, 373–391 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Khan, K.A., Barton, P.I.: A vector forward mode of automatic differentiation for generalized derivative evaluation. Optim. Methods Softw. 30(6), 1185–1212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nesterov, Y.: Lexicographic differentiation of nonsmooth functions. Math. Program. B 104, 669–700 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  10. Khan, K.A., Barton, P.I.: Generalized derivatives for solutions of parametric ordinary differential equations with non-differentiable right-hand sides. J. Optim. Theory Appl. 163, 355–386 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, K.A., Barton, P.I.: Generalized derivatives for hybrid systems (under review, 2015)

  12. Höffner, K., Khan, K.A., Barton, P.I.: Generalized derivatives of dynamic systems with a linear program embedded. Automatica 63, 198–208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khan, K.A., Barton, P.I.: Generalized gradient elements for nonsmooth optimal control problems. In: IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 1887–1892. IEEE (2014)

  14. Kunkel, P., Mehrmann, V.: Differential–Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, Zurich (2006)

    Book  MATH  Google Scholar 

  15. Benyahia, B., Lakerveld, R., Barton, P.I.: A plant-wide dynamic model of a continuous pharmaceutical process. Ind. Eng. Chem. Res. 51(47), 15393–15412 (2012)

    Article  Google Scholar 

  16. Lakerveld, R., Benyahia, B., Heider, P., Zhang, H., Braatz, R.D., Barton, P.I.: Averaging level control to reduce off-spec material in a continuous pharmaceutical pilot plant. Processes 1, 330–348 (2013)

    Article  Google Scholar 

  17. Sahlodin, A.M., Barton, P.I.: Optimal campaign continuous manufacturing. Ind. Eng. Chem. Res. 54(45), 11344–11359 (2015)

    Article  Google Scholar 

  18. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  19. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  20. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  21. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  22. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential–Algebraic Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  23. Petzold, L.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput. 3(3), 367–384 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential–algebraic equations. Handb. Numer. Anal. 8, 183–540 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential–algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feehery, W.F., Tolsma, J.E., Barton, P.I.: Efficient sensitivity analysis of large-scale differential–algebraic systems. Appl. Numer. Math. 25, 41–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Barton, P.I., Lee, C.K.: Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12(4), 256–289 (2002)

    Article  Google Scholar 

  28. Galán, S., Feehery, W.F., Barton, P.I.: Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math. 31, 17–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruban, A.I.: Sensitivity coefficients for discontinuous dynamic systems. J. Comput. Syst. Sci. Int. 36(4), 536–542 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Khan, K.A., Saxena, V.P., Barton, P.I.: Sensitivity analysis of limit-cycle oscillating hybrid systems. SIAM J. Sci. Comput. 33(4), 1475–1504 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wilkins, K.A., Tidor, B., White, J.K., Barton, P.I.: Sensitivity analysis for oscillating dynamical systems. SIAM J. Sci. Comput. 31(4), 2706–2732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pang, J.S., Stewart, D.E.: Solution dependence on initial conditions in differential variational inequalities. Math. Program. B 116, 429–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Program. A 113, 345–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  35. Stechlinski, P.G., Barton, P.I.: Well-posedness results for Carathéodory index-1 semi-explicit differential–algebraic equations. Tech. rep, Massachusetts Institute of Technology, Process Systems Engineering Laboratory, Cambridge, MA (2016)

  36. Sweetser, T.H.: A minimal set-valued strong derivative for vector-valued Lipschitz functions. J. Optim. Theory Appl. 23(4), 549–562 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Imbert, C.: Support functions of the Clarke generalized Jacobian and of its plenary hull. Nonlinear Anal. 49, 1111–1125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program. A 99, 311–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and Kamil A. Khan for his insights.

Funding This research was financially supported by the Novartis-MIT Center for Continuous Manufacturing and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stechlinski, P.G., Barton, P.I. Generalized Derivatives of Differential–Algebraic Equations. J Optim Theory Appl 171, 1–26 (2016). https://doi.org/10.1007/s10957-016-0988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0988-9

Keywords

Mathematics Subject Classification

Navigation