Skip to main content
Log in

Theorem of Optimal Image Trajectories in the Restricted Problem of Three Bodies

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The restricted three-body problem represents the dynamical framework employed for spacecraft mission analysis, in the presence of two attracting bodies, since the 1950s. In this context, orbital motion is often chaotic, although several special solutions (equilibrium points, periodic orbits, and quasiperiodic trajectories) exist, and can be—or have already been—profitably employed in space missions. The theorem of image trajectories, proven five decades ago by Miele, states that for a given path in the restricted problem of three bodies (with primaries in mutual circular orbits), there exists a mirror trajectory (in two dimensions) and three mirror paths (in three dimensions). This theorem regards feasible trajectories and proved extremely useful for investigating the natural dynamics in the restricted problem of three bodies, by identifying special solutions, such as symmetric periodic orbits and free return trajectories. This work extends the theorem of image trajectories to optimal paths, which minimize either the propellant consumption or the time of flight, by determining the relations between the optimal thrust sequence, magnitude, and direction of an outgoing path and a symmetrical returning trajectory. This means that while the theorem of image paths revealed extremely useful for investigating natural dynamics, the theorem of optimal image trajectories can be profitably employed for powered orbital motion, i.e., in the context of impulsive and finite-thrust orbit transfers and rendezvous, as well as for the purpose of analyzing artificial periodic orbits that use very low thrust propulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hohmann, W.: Die Erreichbarkeit der Himmelskoerper. Oldenbourg, Munich, Germany (1925), also The Attainability of Heavenly Bodies. NASA Translation TT–F–44 (1960)

  2. Bliss, G.A.: Lectures on the Calculus of Variations. University of Chicago Press, Chicago (1946)

    MATH  Google Scholar 

  3. Leitmann, G.: A calculus of variations solution of Goddard’s problem. Astronaut. Acta 2, 55–62 (1956)

    MathSciNet  Google Scholar 

  4. Leitmann, G. (ed.): Optimization Techniques. Academic Press, New York, NY (1962)

  5. Cicala, P.: An Engineering Approach to the Calculus of Variations. Levrotto & Bella, Torino (1957)

    Google Scholar 

  6. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  7. Miele, A.: General variational theory of the flight paths of Rocket-Powered aircraft, missiles, and satellite carriers. Astronaut. Acta 4, 11–21 (1958)

    Google Scholar 

  8. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Princeton University Press, New York (1962)

    MATH  Google Scholar 

  9. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Ginn and Company, Waltham (1969)

    Google Scholar 

  10. Vinh, N.X.: General theory of optimal trajectory for rocket flight in a resisting medium. J. Optim. Theory Appl. 11, 189–202 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  12. Darwin, G.: Periodic orbits. Acta Math. 21, 99–242 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hill, G.W.: Review of Darwin’s periodic orbits. Astron. J. 18, 120 (1898)

    Article  Google Scholar 

  14. Broucke, R.A.: Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses. In: JPL Technical Report 32-1168. Pasadena, CA (1968)

  15. Farquhar, R.W.: Lunar communications with libration-point satellites. J. Spacecr. Rocket. 4(10), 1383–1384 (1967)

    Article  Google Scholar 

  16. Hénon, M.: Vertical stability of periodic orbits in the restricted problem I. Equal masses. Astron. Astrophys. 28, 415–426 (1973)

    MATH  Google Scholar 

  17. Breakwell, J.V., Brown, J.: The Halo family of three dimensional periodic orbits in the Earth-Moon restricted three body problem. Celest. Mech. 20(4), 389–404 (1979)

    Article  MATH  Google Scholar 

  18. Howell, K.C.: Three dimensional periodic Halo orbits. Celest. Mech. 32(1), 53–72 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)

    Article  MATH  Google Scholar 

  20. Hénon, M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. 85, 223–246 (2003)

    Article  MATH  Google Scholar 

  21. Guibout, V.M., Scheeres, D.J.: Periodic orbits from generating functions. Adv. Astronaut. Sc. 116(2), 1029–1048 (2004)

    Google Scholar 

  22. Martin, C., Pontani, M., Conway, B.A.: New numerical methods for determining periodic orbits in the circular restricted three-body problem. In: Proceedings of the 61st International Astronautical Congress, Prague, Czech Republic (2010)

  23. Pontani, M., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  24. Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)

    Article  MATH  Google Scholar 

  25. Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41, 107–124 (1987)

    Article  MATH  Google Scholar 

  26. Masdemont, J., Gómez, G., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)

    MathSciNet  Google Scholar 

  27. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112, 47–74 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olikara, Z.P., Scheeres, D.J.: Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem. In: Proceedings of the 1st IAA Conference on Dynamics and Control of Space Systems, Porto, Portugal (2012) (paper IAA-AAS-DyCoSS1-08-10)

  29. Folta, D.C., Woodard, M., Howell, K., Patterson, C., Schlei, W.: Applications of multi-body dynamical environments: the ARTEMIS transfer trajectory design. Acta Astronaut. 73, 237–249 (2012)

    Article  Google Scholar 

  30. Perryman, M.A.C.: Overview of the Gaia mission. In: Proceedings of the Symposium The Three-Dimensional Universe with Gaia, pp. 15–22. Paris, France (2004)

  31. Miele, A.: Theorem of image trajectories in Earth-Moon space. Acta Astronaut. 6(5), 225–232 (1960)

    Google Scholar 

  32. Miele, A.: Revisit of the theorem of image trajectories in Earth-Moon space. J. Optim. Theory Appl. 147(3), 483–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pontani, M., Miele, A.: Periodic image trajectories in Earth-Moon space. J. Optim. Theory Appl. 157(3), 866–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miele, A., Mancuso, S.: Optimal trajectories for Earth-Moon-Earth flight. Acta Astronaut. 49(2), 59–71 (2001)

    Article  Google Scholar 

  35. Roy, A.E.: Orbital Motion. IOP Publishing Ltd., London (2005)

    Google Scholar 

  36. Hull, D.G.: Optimal Control Theory for Applications. Springer International Edition, New York (2003)

    Book  MATH  Google Scholar 

  37. Marec, J.P.: Optimal Space Trajectories. Elsevier, New York (1979)

    MATH  Google Scholar 

  38. Pontani, M.: Particle Swarm global optimization of orbital maneuvers. In: Global Optimization—Theory, Developments and Applications, Mathematics Research Developments, pp. 43–78. Nova Science Publishers, New York, NY (2013)

  39. Szebehely, V.: Theory of Orbits in the Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Pontani.

Additional information

Communicated by Ryan P. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontani, M., Miele, A. Theorem of Optimal Image Trajectories in the Restricted Problem of Three Bodies. J Optim Theory Appl 168, 992–1013 (2016). https://doi.org/10.1007/s10957-015-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0852-3

Keywords

Mathematics Subject Classification

Navigation