Skip to main content
Log in

On Computation of the Shape Hessian of the Cost Functional Without Shape Sensitivity of the State Variable

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A framework for calculating the shape Hessian for the domain optimization problem, with a partial differential equation as the constraint, is presented. First and second order approximations of the cost with respect to geometry perturbations are arranged in an efficient manner that allows the computation of the shape derivative and Hessian of the cost without the necessity to involve the shape derivative of the state variable. In doing so, the state and adjoint variables are only required to be Hölder continuous with respect to geometry perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrot, A., Pierre, M.: About critical points of the energy in electromagnetic shaping problem. In: Zolesio J.-P. (ed.) Boundary Control and Boundary Variation. Lecture notes in Control and Information Sciences, vol. 178, pp. 238–252. Springer, Berlin (1991)

  2. Tiihonen, T.: Shape optimization and trial methods for free boundary problems. ESAIM Math. Model. Numer. Anal. 31, 805–825 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Burger, M.: Levenberg–Marquardt level set methods for inverse obstacle problems. Inverse Problems 20, 259–282 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fujii, N.: Second variation and its application in domain optimization problem. in control of distributed parameter systems. In: Proceedings of the 4th IFAC Symposium. Pergamon Press, Oxford (1987)

  5. Simon, J.: Second variations for domain optimization problems. In: Kappel F. et al. (eds.) Control and Estimation of Distributed Parameter Systems. International Series of Numerical Mathematics vol. 91, pp. 361–378 (1989)

  6. Delfour, M., Zolesio, J.P.: Anatomy of the shape Hessian. Ann. Mat. Pura Appl. 519, 315–339 (1991)

    Article  MathSciNet  Google Scholar 

  7. Delfour, M., Zolesio, J.P.: Velocity method and Lagrangian formulation for the computation of the shape Hessian. SIAM J. Control Optim. 29(6), 1414–1442 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14, 517–539 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Delfour, M.C., Zolésio, J.P.: Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  10. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  11. Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag, Berlin (1992)

    Book  MATH  Google Scholar 

  12. Plotnikov, P., Sokolowski, J.: Compressible Navier–Stokes Equations: Theory and Shape Optimization. Monografie Matematyczne, vol. 73. Birkhäuser, Basel (2012)

  13. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314(1), 126–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes. Springer-Verlag, Berlin (1986)

    MATH  Google Scholar 

  15. Haslinger, J., Ito, K., Kozubek, T., Kunisch, K., Peichl, G.: On the shape derivative for problems of Bernoulli type. Interfaces Free Bound. 11(2), 317–330 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  17. Khludnev, A.M., Sokolowski, J.: Modelling and Control in Solid Mechanics. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  18. Bucur, D., Zolesio, J.P.: Anatomy of the shape Hessian via lie brackets. Ann. Mat. Pura. Appl. 173(4), 127–143 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second author was supported in part by the Austrian Science Fund Fond zur Forderung der Wissenschaftlichen Forschung (FWF) under grant SFB F32 (SFB “Mathematical Optimization and Applications in Biomedical Sciences”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kasumba.

Additional information

Communicated by Günter Leugering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasumba, H., Kunisch, K. On Computation of the Shape Hessian of the Cost Functional Without Shape Sensitivity of the State Variable. J Optim Theory Appl 162, 779–804 (2014). https://doi.org/10.1007/s10957-013-0520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0520-4

Keywords

Mathematics Subject Classification (2000)

Navigation