Skip to main content
Log in

Optimal Control for Stochastic Delay Systems Under Model Uncertainty: A Stochastic Differential Game Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study a robust recursive utility maximization problem for time-delayed stochastic differential equation with jumps. This problem can be written as a stochastic delayed differential game. We suggest a maximum principle of this problem and obtain necessary and sufficient condition of optimality. We apply the result to study a problem of consumption choice optimization under model uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Föllmer, H., Schield, A.: In: Stochastic Finance: An Introduction in Discrete Time, 2nd edn. De Gruyter Studies in Mathematics, vol. 27 (2004)

    Chapter  Google Scholar 

  2. Gundel, A.: Robust utility maximization for complete and incomplete market models. Finance Stoch. 9, 151–176 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Øksendal, B., Sulem, A.: Forward–backward stochastic differential games and stochastic control under model uncertainty. J. Optim. Theory Appl. (2012). doi:10.1007/s10957-012-0166-7

    Google Scholar 

  4. Kushner, H.J.: On the stochastic maximum principle: fixed time of control. J. Math. Anal. Appl. 11, 78–92 (1865)

    Article  MathSciNet  Google Scholar 

  5. Kushner, H.J.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10, 550–565 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bensousssan, A.: Lectures on stochastic control. In: Mittler, S.K., Moro, A. (eds.) Nonlinear Filtering and Stochastic Control. Lecture notes in Mathematics, vol. 972, pp. 1–62. Springer, Berlin (1982)

    Chapter  Google Scholar 

  7. Bismut, J.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)

    Article  MathSciNet  Google Scholar 

  8. Bismut, J.: An introductory approach to duality in optimal stochastic control. SIAM Rev. 20, 62–78 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hausmann, U.: A Stochastic Maximum Principle for Optimal Control of Diffusions. Pitman Research Notes in Mathematics. Wiley, New York (1986)

    Google Scholar 

  10. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28, 966–979 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhou, X.: Sufficient conditions of optimality for stochastic systems with controllable diffusions. IEEE Trans. Autom. Control 41, 1176–1179 (1996)

    Article  MATH  Google Scholar 

  12. Bensousssan, A.: Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stoch. Stoch. Rep. 9(3), 169–222 (1983)

    Google Scholar 

  13. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer, Berlin (2007)

    Book  Google Scholar 

  14. Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  15. Epstein, L., Zin, S.: Substitution, risk aversion and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937–969 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Weil, P.: Non-expected utility in macroeconomics. Q. J. Econ. 105, 29–42 (1990)

    Article  MathSciNet  Google Scholar 

  17. Giovanni, A., Weil, P.: Risk aversion and intertemporal substitution in the capital asset pricing model. Tech. rep., NBER Working Paper 2824 (1989)

  18. Epstein, L., Zin, S.: The independence axiom and asset returns. J. Empir. Finance 8, 537–572 (2001)

    Article  Google Scholar 

  19. Duffie, D., Epstein, M.: Stochastic differential utility. Econometrica 60, 353–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karoui, N.E., Peng, S., Quenez, M.C.: A dynamic maximum principle for the optimization of recursive utilities under constraints. Ann. Appl. Probab. 11(3), 664–693 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Faidi, W., Matoussi, A., Mnif, M.: Maximization of recursive utilities: a dynamic maximum principle approach. SIAM J. Financ. Math. 2(1), 1014–1041 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Øksendal, B., Sulem, A.: Maximum principles for optimal control of forward–backward stochastic differential equations with jumps. SIAM J. Control Optim. 48(5), 2845–2976 (2009)

    Google Scholar 

  23. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  24. Shi, J.T.: Maximum principle of recursive optimal control problem for forward–backward stochastic delayed system with Poisson jumps. Sci. Sin. Math. 42(3), 251–270 (2012)

    Article  Google Scholar 

  25. Shi, J.T., Wu, Z.: Maximum principle for forward-backward stochastic control system with random jumps and applications to finance. J. Syst. Sci. Complex. 23(2), 219–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mohammed, S.E.A.: Stochastic Differential Equations with Memory: Theory, Examples and Applications, Stochastic Analysis and Related Topics VI. Progress in Mathematics, vol. 42. Springer, Berlin (1998)

    Google Scholar 

  28. Øksendal, B., Sulem, A.: A maximum principle for optimal control of stochastic systems with delay with applications to finance. In: Menaldi, J., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 64–79. IOS Press, Amsterdam (2001)

    Google Scholar 

  29. Peng, S., Yang, Z.: Anticipated backward stochastic differential equations. Ann. Probab. 37(3), 877–902 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43, 572–596 (2011)

    Article  Google Scholar 

  31. Bordigoni, G., Matoussi, A., Schweizer, M.: A Stochastic Control Approach to a Robust Utility Maximization Problem pp. 125–151. Springer, Berlin (2005)

    Google Scholar 

  32. Jeanblanc, M., Matoussi, A., Ngoupeyou, A.: Robust utility maximization in a discontinuous filtration (2012)

  33. Øksendal, B., Sulem, A.: Portfolio optimization under model uncertainty and BSDE games. Quant. Finance 11(11), 1665–1674 (2011)

    Article  MathSciNet  Google Scholar 

  34. Chen, L., Wu, Z.: Maximum principle for the stochastic optimal control problem with delay and application. Automatica 46, 1074–1080 (2010)

    Article  MATH  Google Scholar 

  35. Duffie, D., Skiadas, C.: Continuous-time security pricing: a utility gradient approach. J. Math. Econ. 23, 107–131 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Karoui, N.E., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ivanov, A.F., Swishchuk, A.V.: Optimal control for stochastic differential delay equations with applications in economics. Int. J. Qual. Theory Differ. Equs. Appl. 2(2), 201–213 (2008)

    MATH  Google Scholar 

  38. Ramsey, F.P.: A mathematical theory of savings. Econ. J. 38, 543–559 (1928)

    Article  Google Scholar 

  39. Gandolfo, G.: Economic Dynamics, 4th edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  40. Menoukeu-Pamen, O.: Malliavin differentiability of time-advanced backward stochastic differential equations. Tech. Rep., University of Oslo (2011)

  41. Bahlali, K., Djehiche, B., Mezerdi, B.: On the stochastic maximum principle in optimal control of degenerate diffusions with Lipschitz coefficients. Appl. Math. Optim. 56, 364–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Donnelly, C.: Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math. Optim. 64, 155–169 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Donnelly, C., Heunis, A.J.: Quadratic risk minimization in a regime-switching model with portfolio constraints. SIAM J. Control Optim. 50(4), 2431–2461 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhang, X., Elliott, R.J., Siu, T.K.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control Optim. 50(2), 964–990 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Hamilton, J.: A new approach to the economic analysis of non-stationary time series. Econometrica 57, 357–384 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to an anonymous referee and to Professor Franco Giannessi for their helpful comments and suggestions.

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement No. [228087].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Menoukeu Pamen.

Appendix A

Appendix A

Lemma A.1

Suppose that δ>0 is a given constant, \(\beta, \theta_{0} \in L^{2}_{\mathcal{F}}(-\delta,T+\delta), \ell\in L^{2}_{\mathcal{F}}(0,T), \theta_{1}(t,z)>-1+\varepsilon\) and θ 1H 2(−δ,T+δ). Moreover, suppose that β,θ 0,θ 1 are uniformly bounded, and F is such that

$$F\in S^2_{\mathcal{F}}(T,T+\delta) \quad\textit{and}\quad E \Bigl[ \underset{0\leq t\leq T}{\sup}\big|F(t)\big|^2 \Bigr]< \infty. $$

Then the linear anticipated BSDE

$$ \left \{ \begin{array}{rcl} \mathrm {d}Y(t) & = &- \displaystyle \biggl( \ell(t) +\beta(t) Y(t)+\theta_0(t) Z(t) +\int_{\mathbb{R}_0} \theta_1(t,z)K(t,z) \nu(\mathrm {d}z) \biggr)\,\mathrm {d}t\\ & & +Z(t)\,\mathrm {d}B(t) +\displaystyle\int_{\mathbb{R}_0}K(t,z) \widetilde{N}(\mathrm {d}z,\mathrm {d}t);\quad t \in[ 0,T] , \\ Y(t) &=& F(t);\quad t \in[T,T+\delta] ,\\ Z(t)&=&0,\quad t \in[T,T+\delta] ,\\ K(t,z)&=&0,\quad t \in[T,T+\delta] \end{array} \right . $$
(95)

has the unique solution

$$\begin{aligned} Y(t)=E \biggl[ F(T)G(t,T)+\int_t^TG(t,s)l(s) \,\mathrm {d}s \Big| \mathcal {F}_t \biggr], \end{aligned}$$
(96)

where G(t,s) is defined by

$$ \left \{ \begin{array}{rcl} \mathrm {d}G^{\theta} (t,s) & = & G^{\theta} (t,s^-) \biggl(\beta(s)\,\mathrm {d}s + \theta_0(s)\,\mathrm {d}B(s) + \displaystyle\int_{\mathbb{R}_0}\theta _1(s,z)\widetilde{N}(\mathrm {d}z,\mathrm {d}s) \biggr);\\ && \quad s \in[ t,T+\delta ], \\ G^{\theta} (t,t) &=& 1, \\ G^{\theta} (t,s)&=& 0 ,\quad s \in[t-\delta, t[. \end{array} \right . $$
(97)

Proof

The existence and uniqueness results follow by a general theorem for time-advanced BSDEs; see [30].

Equation (97) has a unique solution. In fact, for s∈[t,t+δ], (97) becomes

$$ \left \{ \begin{array}{rcl} \mathrm {d}G^{\theta} (t,s) & = & G^{\theta} (t,s^-) \biggl(\beta(s)\,\mathrm {d}s + \theta_0(s)\,\mathrm {d}B(s) +\displaystyle\int_{\mathbb{R}_0}\theta_1(s,z) \widetilde{N}(\mathrm {d}z,\mathrm {d}s) \biggr);\\ && \quad s \in[ t,t+\delta] , \\ G^{\theta} (t,t) &=& 1. \end{array} \right . $$
(98)

We can then get a unique solution ξ(t,⋅) for (98). When s∈[t+δ,T+δ], (97) can be written has

$$ \left \{ \begin{array}{rcl} \mathrm {d}G^{\theta} (t,s) & = & G^{\theta} (t,s^-) \biggl(\beta(s)\,\mathrm {d}s + \theta_0(s)\,\mathrm {d}B(s) +\displaystyle\int_{\mathbb{R}_0}\theta_1(s,z) \widetilde{N}(\mathrm {d}z,\mathrm {d}s) \biggr);\\ && \quad s \in [t+\delta,T+\delta ], \\ G^{\theta} (t,s) &=& \xi(t,s),\quad s\in[t,t+\delta]. \end{array} \right . $$
(99)

Equation (99) is a classical stochastic delay differential equation (SDDE), and therefore has a unique solution. It only remains to prove that if Y(t) is defined to be the solution of (95), then (96) holds. By Itô formula, we have

$$\begin{aligned} \mathrm {d}\bigl(G(t,s)Y(s)\bigr)&=G\bigl(t,s^-\bigr)\,\mathrm {d}Y(s)+Y(s)\,\mathrm {d}G(t,s)+ \mathrm {d}(GY) (s) \\ &=G\bigl(t,s^-\bigr) \biggl\{ - \biggl(\ell(t) +\beta(t) Y(t)+ \theta_0(t) Z(t) \\&\quad{} +\int_{\mathbb{R}_0} \theta_1(t,z)K(t,z) \nu(\mathrm {d}z) \biggr)\,\mathrm {d}t \\ &\quad{} +Z(t)\,\mathrm {d}B(t) +\int_{\mathbb{R}_0}K(t,z) \widetilde {N}(\mathrm {d}z, \mathrm {d}t) \biggr\} \\&\quad{} + Y(s)G\bigl(t,s^-\bigr) \biggl[\beta(s)\,\mathrm {d}s + \theta_0(s)\,\mathrm {d}B(s) \\ &\quad{} +\int_{\mathbb{R}_0}\theta_1(s,z) \widetilde{N}(\mathrm {d}z,\mathrm {d}s) \biggr] \\&\quad{} +G\bigl(t,s^-\bigr) \biggl[ \theta_0(s)Z(s) \,\mathrm {d}s+\int_{\mathbb{R}_0}\theta _1(s,z)K(t,z) \nu(\mathrm {d}z)\,\mathrm {d}s \biggr]. \end{aligned}$$

Integrating from 0 to T and taking the conditional expectation under \(\mathcal{F}_{t}\), we have

$$E \bigl[G(t,T)Y(T) \big| \mathcal{F}_t \bigr] - G(t,t)Y(t)=-E \biggl[\int_t^T G\bigl(t,s^-\bigr)\ell(s)\,\mathrm {d}s \Big| \mathcal{F}_t \biggr] . $$

Since G(t,t)=1, we obtain

$$Y(t)=E \biggl[G(t,T)Y(T) + \int_t^T G \bigl(t,s^-\bigr)\ell(s) \,\mathrm{d}s \Big| \mathcal{F}_t \biggr] . $$

 □

Remark A.1

Let V be an open subset of a Banach space \(\mathcal{X}\) and let \(F: V \rightarrow\mathbb{R}\).

  • We say that F has a directional derivative (or Gateaux derivative) at xV in the direction \(y\in\mathcal{X}\) if

    $$D_yF(x):=\underset{\varepsilon\rightarrow0}{\lim} \frac{1}{\varepsilon }\bigl(F(x + \varepsilon y)-F(x)\bigr)\quad \text{exists.} $$
  • We say that F is Fréchet differentiable at xV if there exists a linear map

    $$L:\mathcal{X} \rightarrow\mathbb{R} $$

    such that

    $$\underset{\underset{h \in\mathcal{X}}{h \rightarrow0}}{\lim} \frac {1}{\|h\|}\big|F(x+h)-F(x)-L(h)\big|=0. $$

    In this case, we call L the Fréchet derivative of F at x, and we write

    $$L=\nabla_x F. $$
  • If F is Fréchet differentiable, then F has a directional derivative in all directions \(y \in\mathcal{X}\) and

    $$D_yF(x)= \nabla_x F(y). $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menoukeu Pamen, O. Optimal Control for Stochastic Delay Systems Under Model Uncertainty: A Stochastic Differential Game Approach. J Optim Theory Appl 167, 998–1031 (2015). https://doi.org/10.1007/s10957-013-0484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0484-4

Keywords

Navigation