Skip to main content
Log in

On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a Hilbert space, we study the finite termination of iterative methods for solving a monotone variational inequality under a weak sharpness assumption. Most results to date require that the sequence generated by the method converges strongly to a solution. In this paper, we show that the proximal point algorithm for solving the variational inequality terminates at a solution in a finite number of iterations if the solution set is weakly sharp. Consequently, we derive finite convergence results for the gradient projection and extragradient methods. Our results show that the assumption of strong convergence of sequences can be removed in the Hilbert space case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  2. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Pure and Applied Mathematics. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Takahashi, W.: Nonlinear Functional Analysis. Yokohama, Japan (2000)

    MATH  Google Scholar 

  4. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems I. Springer, New York (2003)

    MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  6. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 4, 154–158 (1970)

    MATH  MathSciNet  Google Scholar 

  7. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MATH  Google Scholar 

  9. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  Google Scholar 

  10. Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MATH  Google Scholar 

  11. Iiduka, H., Takahashi, W., Toyoda, M.: Approximation of solutions of variational inequalities for monotone mappings. Panam. Math. J. 14, 49–61 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  14. Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25, 1197–1211 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xiu, N.H., Zhang, J.Z.: Local convergence analysis of projection-type algorithms: a unified approach. J. Optim. Theory Appl. 115, 211–230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 60, 237–252 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 60, 283–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Program. 50, 359–366 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mangasarian, O.L.: Error bounds for nondegenerate monotone linear complementarity problems. Math. Program. 48, 437–445 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Patriksson, M.: Unified framework of descent algorithms for nonlinear programs and variational inequalities. Ph.D. Thesis, Linköping Institute of Technology (1993)

  23. Xiu, N.H., Zhang, J.Z.: On finite convergence of proximal point algorithms for variational inequalities. J. Math. Anal. Appl. 312, 148–158 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hu, Y.H., Song, W.: Weak sharp solutions for variational inequalities in Banach spaces. J. Math. Anal. Appl. 374, 118–132 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bauschke, H.H., Burke, J.V., Deutsch, F.R., Hundal, H.S., Vanderwerff, J.D.: A new proximal point iteration that converges weakly but not in norm. Proc. Am. Math. Soc. 133, 1829–1835 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  29. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kopecká, E., Reich, S.: A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 12, 41–47 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Daniilidis, A., Hadjisavvas, N.: Coercivity conditions and variational inequalities. Math. Program. 86, 433–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  33. Reich, S.: Nonlinear evolution equations and nonlinear ergodic theorems. Nonlinear Anal. 1, 319–330 (1977)

    Article  MATH  Google Scholar 

  34. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Marcotte, P., Zhu, D.L.: Weak sharp solutions of variational inequalities. SIAM J. Optim. 9, 179–189 (1999)

    Article  MathSciNet  Google Scholar 

  37. Wu, Z.L., Wu, S.Y.: Weak sharp solutions of variational inequalities in Hilbert spaces. SIAM J. Optim. 14, 1011–1027 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhou, J., Wang, C.: A note on finite termination of iterative algorithms in mathematical programming. Oper. Res. Lett. 36, 715–717 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Matsushita, S., Xu, L.: Finite convergence of the proximal point algorithm for variational inequality problems. Set-Valued Var. Anal. 21, 297–309 (2013)

    Article  MathSciNet  Google Scholar 

  40. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Dunn, J.C.: Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM J. Control Optim. 17, 187–211 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wu, Z., Wu, S.Y.: Gâteaux differentiability of the dual function of a variational inequality. Eur. J. Oper. Res. 190, 328–344 (2008)

    Article  MATH  Google Scholar 

  50. Mangasarian, O.L., Meyer, R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17, 745–752 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Associate Editor Michael Patriksson and the referees for their insightful comments and suggestions that have helped us improve both the exposition and the content of this paper. The authors also thank Professor W. Takahashi of Tokyo Institute of Technology and Professor D. Kuroiwa of Shimane University for their helpful support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ya Matsushita.

Additional information

Communicated by Michael Patriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita, Sy., Xu, L. On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces. J Optim Theory Appl 161, 701–715 (2014). https://doi.org/10.1007/s10957-013-0460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0460-z

Keywords

Navigation