Skip to main content
Log in

A Framework for Globally Optimizing Mixed-Integer Signomial Programs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. (2012). doi:10.1007/s10898-012-9874-7

    Google Scholar 

  2. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program., Ser. B 136, 155–182 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically-generated cutting planes for mixed-integer quadratically-constrained quadratic programs and their incorporation into GloMIQO 2.0 (2012). Submitted for Publication

  4. Duffin, R.J., Peterson, E.L.: Duality theory for geometric programming. SIAM J. Appl. Math. 14(6), 1307–1349 (1966)

    MATH  MathSciNet  Google Scholar 

  5. Duffin, R.J., Peterson, E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11(1), 3–35 (1973)

    MATH  MathSciNet  Google Scholar 

  6. Blau, G.E., Wilde, D.J.: Generalized polynomial programming. Can. J. Chem. Eng. 47(4), 317–326 (1969)

    Google Scholar 

  7. Passy, U., Wilde, D.J.: Generalized polynomial optimization. SIAM J. Appl. Math. 15(5), 1344–1356 (1967)

    MATH  MathSciNet  Google Scholar 

  8. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–369 (1997)

    MathSciNet  Google Scholar 

  9. Floudas, C.A., Ciric, A.R.: Strategies for overcoming uncertainties in heat exchanger network synthesis. Comput. Chem. Eng. 13(10), 1133–1152 (1989)

    Google Scholar 

  10. Quesada, I., Grossmann, I.E.: Global optimization algorithm for heat exchanger networks. Ind. Eng. Chem. Res. 32(3), 487–499 (1993)

    Google Scholar 

  11. Kallrath, J.: Mixed-integer nonlinear programming applications. In: Ciriani, T.A. (ed.) Operational Research in Industry. Ichor Business Books. Purdue University Press, West Lafayette (1999)

    Google Scholar 

  12. Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard–Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)

    Google Scholar 

  13. Maranas, C.D., Floudas, C.A.: Global optimization for molecular conformation problems. Ann. Oper. Res. 42, 85–117 (1993)

    MATH  Google Scholar 

  14. Aggarwal, A., Floudas, C.A.: Synthesis of heat integrated nonsharp distillation sequences. Comput. Chem. Eng. 16(2), 89–108 (1992)

    Google Scholar 

  15. Kokossis, A.C., Floudas, C.A.: Optimization of complex reactor networks–II. Nonisothermal operation. Chem. Eng. Sci. 49(7), 1037–1051 (1994)

    Google Scholar 

  16. Kallrath, J.: Exact computation of global minima of a nonconvex portfolio optimization problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  17. Lin, X., Floudas, C.A., Kallrath, J.: Global solution approach for a nonconvex MINLP problem in product portfolio optimization. J. Glob. Optim. 32, 417–431 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Hatzimanikatis, V., Floudas, C.A., Bailey, J.E.: Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42(5), 1277–1292 (1996)

    Google Scholar 

  19. Hatzimanikatis, V., Floudas, C.A., Bailey, J.E.: Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. 52(4), 485–500 (1996)

    Google Scholar 

  20. Baliban, R.C., Elia, J.A., Floudas, C.A.: Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility. Comput. Chem. Eng. 35(9), 1647–1690 (2011)

    Google Scholar 

  21. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous integer global optimization of nonlinear expressions (2013). Submitted for Publication

  22. Drud, A.: CONOPT. http://www.gams.com/dd/docs/solvers/conopt.pdf (2012). Version 3

  23. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Google Scholar 

  25. Misener, R., Floudas, C.A.: Global optimization of mixed-integer models with quadratic and signomial functions: a review. Appl. Comput. Math. 11(3), 317–336 (2012)

    MATH  MathSciNet  Google Scholar 

  26. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  27. Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  28. Horst, R., Hoang, T.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    MATH  Google Scholar 

  29. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. International Series of Numerical Mathematics. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  30. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic, Norwell (2002)

    Google Scholar 

  32. Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2010)

    Google Scholar 

  33. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)

    Google Scholar 

  34. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice differentiable NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)

    Google Scholar 

  35. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

    MATH  MathSciNet  Google Scholar 

  36. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)

    MATH  MathSciNet  Google Scholar 

  37. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    MATH  MathSciNet  Google Scholar 

  38. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    MATH  MathSciNet  Google Scholar 

  39. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    MATH  MathSciNet  Google Scholar 

  40. Lougee-Heimer, R.: The common optimization INterface for operations res.: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)

    Google Scholar 

  41. Gau, C.Y., Schrage, L.E.: Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 145–164. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  42. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)

    MATH  MathSciNet  Google Scholar 

  43. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    MATH  MathSciNet  Google Scholar 

  44. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Fifth International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR (2008)

    Google Scholar 

  45. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. the IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 427–444. Springer, New York (2012)

    Google Scholar 

  46. Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: Analyzing the computational impact of MIQCP solver components. Numer. Algebra Contr. Optim. 2(4), 739–748 (2012)

    MATH  MathSciNet  Google Scholar 

  47. Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. PhD in Mathematics, Humboldt-University, Berlin (2012)

  48. Lundell, A., Westerlund, T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24(4–5), 505–522 (2009)

    MATH  MathSciNet  Google Scholar 

  49. Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, the IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 349–369. Springer, New York (2012)

    Google Scholar 

  50. Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43, 391–405 (2009)

    MATH  MathSciNet  Google Scholar 

  51. Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim. (2012). doi:10.1007/s10898-012-9877-4

    MATH  Google Scholar 

  52. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part 1—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    MATH  MathSciNet  Google Scholar 

  53. Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)

    Google Scholar 

  54. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 133–154 (2001)

    MathSciNet  Google Scholar 

  55. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  56. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29(2), 125–155 (2004)

    MATH  MathSciNet  Google Scholar 

  57. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010)

    MATH  MathSciNet  Google Scholar 

  58. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003)

    MATH  MathSciNet  Google Scholar 

  59. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)

    MATH  MathSciNet  Google Scholar 

  60. Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discrete Appl. Math. 22, 191–195 (1988/89)

    MathSciNet  Google Scholar 

  61. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  62. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    MATH  MathSciNet  Google Scholar 

  63. Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138(1–2), 531–577 (2013)

    MATH  MathSciNet  Google Scholar 

  64. Gounaris, C.E., Floudas, C.A.: Convexity of products of univariate functions and convexification transformations for geometric programming. J. Optim. Theory Appl. 138, 407–427 (2008)

    MathSciNet  Google Scholar 

  65. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Program. 137(1–2), 371–408 (2013)

    MATH  MathSciNet  Google Scholar 

  66. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2012)

    MATH  MathSciNet  Google Scholar 

  67. Shikhman, V., Stein, O.: On jet-convex functions and their tensor products. Optimization 61(6), 717–731 (2012)

    MATH  MathSciNet  Google Scholar 

  68. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28 (2011)

    MathSciNet  Google Scholar 

  69. Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation techniques. Optim. Eng. 3, 305–326 (2002)

    MATH  MathSciNet  Google Scholar 

  70. Tawarmalani, M., Ahmed, S., Sahinidis, N.V.: Product disaggregation in global optimization and relaxations of rational programs. Optim. Eng. 3, 281–303 (2002)

    MATH  MathSciNet  Google Scholar 

  71. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch-and-cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    MATH  MathSciNet  Google Scholar 

  72. Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)

    MATH  MathSciNet  Google Scholar 

  73. Sherali, H., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programming problems. J. Glob. Optim. 52(3), 447–469 (2012)

    MATH  MathSciNet  Google Scholar 

  74. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)

    MATH  MathSciNet  Google Scholar 

  75. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic-programming problems. J. Glob. Optim. 7(1), 1–31 (1995)

    MATH  MathSciNet  Google Scholar 

  76. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    MATH  MathSciNet  Google Scholar 

  77. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)

    MATH  MathSciNet  Google Scholar 

  78. Goldstein, A.A., Price, J.F.: On descent from local minima. Math. Comput. 25(115), 569–574 (1971)

    MATH  MathSciNet  Google Scholar 

  79. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  80. Guillén-Gosálbez, G., Pozo, C.: In: Optimization of Metabolic Networks in Biotechnology (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=81

    Google Scholar 

  81. Guillén-Gosálbez, G., Sorribas, A.: Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses. BMC Bioinform. 10, 386 (2009)

    Google Scholar 

  82. Brönnimann, H., Melquiond, G., Pion, S.: The boost interval arithmetic library. In: Proceedings of the 5th Conference on Real Numbers and Computers, Lyon, France, pp. 65–80 (2003)

    Google Scholar 

  83. Brönnimann, H., Melquiond, G., Pion, S.: The design of the boost interval arithmetic library. Theor. Comput. Sci. 351, 111–118 (2006)

    MATH  Google Scholar 

  84. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    MATH  MathSciNet  Google Scholar 

  85. Belotti, P., Cafieri, S., Lee, J., Liberti, L., Miller, A.: On the composition of convex envelopes for quadrilinear terms. In: Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Pistikopoulos, E.N. (eds.) Optimization, Simulation, and Control. Springer Optimization and Its Applications, vol. 76, pp. 1–16. Springer, New York (2013)

    Google Scholar 

  86. Liberti, L., Lavor, C., Maculan, N., Nascimento, M.: Reformulation in mathematical programming: an application to quantum chemistry. Discrete Appl. Math. 157(6), 1309–1318 (2009)

    MATH  MathSciNet  Google Scholar 

  87. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    MATH  MathSciNet  Google Scholar 

  88. Chang, Y.J., Sahinidis, N.V.: Global optimization in stabilizing controller design. J. Glob. Optim. 38, 509–526 (2007)

    MATH  MathSciNet  Google Scholar 

  89. Chang, Y.J., Sahinidis, N.V.: Stabilizing controller design and the Belgian chocolate problem (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=57

  90. Gopalakrishnan, A., Biegler, L.: MINLP and MPCC formulations for the cascading tanks problem (2011). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=140

  91. Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous cyclic scheduling and control of a multiproduct cstr (2009). Available from CyberInfrastructure for MINLP at. www.minlp.org/library/problem/index.php?i=71

  92. Caballero, J.A., Grossmann, I.E.: Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind. Eng. Chem. Res. 40(10), 2260–2274 (2001)

    Google Scholar 

  93. Caballero, J.A., Grossmann, I.E.: Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput. Chem. Eng. 28(11), 2307–2329 (2004)

    Google Scholar 

  94. Caballero, J.A., Grossmann, I.E.: Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences. Ind. Eng. Chem. Res. 45(25), 8454–8474 (2006)

    Google Scholar 

  95. Caballero, J.A., Grossmann, I.E.: Optimal separation sequences based on distillation: from conventional to fully thermally coupled systems (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=69

  96. Escobar, M., Grossmann, I.E.: Mixed-integer nonlinear programming models for optimal simultaneous synthesis of heat exchangers network (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=93

  97. Yee, T.F., Grossmann, I.E.: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Comput. Chem. Eng. 14(10), 1165–1184 (1990)

    Google Scholar 

  98. Grossmann, I.E., Sargent, R.W.H.: Optimum design of multipurpose chemical plants. Ind. Eng. Chem. Process Des. Dev. 18(2), 343–348 (1979)

    Google Scholar 

  99. Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)

    Google Scholar 

  100. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models for the optimal design of multi-product batch plant (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=48

  101. Castro, P., Novais, A.: Optimal periodic scheduling of multistage continuous plants with single and multiple time grid formulations. Ind. Eng. Chem. Res. 46(11), 3669–3683 (2007)

    Google Scholar 

  102. Castro, P., Novais, A.: Periodic scheduling of continuous multiproduct plants (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=34

  103. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management. Ind. Eng. Chem. Res. 47(20), 7802–7817 (2008)

    Google Scholar 

  104. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for supply chain design with stochastic inventory management (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=30

  105. Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of a three-echelon supply chain with inventories under uncertainty (2012). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=157

  106. Nyberg, A., Grossmann, I.E., Westerlund, T.: An efficient reformulation of the multiechelon stochastic inventory system with uncertain demands. AIChE J. 59(1), 23–28 (2013)

    Google Scholar 

  107. You, F., Grossmann, I.E.: Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models, computational strategies. AIChE J. 56(2), 419–440 (2010)

    Google Scholar 

  108. Niknam, T., Khodaei, A., Fallahi, F.: A new decomposition approach for the thermal unit commitment problem. Appl. Energy 86(9), 1667–1674 (2009)

    Google Scholar 

  109. Zondervan, E., Grossmann, I.E.: A deterministic security constrained unit commitment model (2009). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=41

  110. Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13, 219–246 (2012)

    MathSciNet  Google Scholar 

  111. D’Ambrosio, C., Bragalli, C., Lee, J., Lodi, A., Toth, P.: Optimal design of water distribution networks (2011). Available from CyberInfrastructure for MINLP at. www.minlp.org/library/problem/index.php?i=134

  112. Ahmetović, E., Grossmann, I.E.: Integrated process water networks design problem (2010). Available from CyberInfrastructure for MINLP at: www.minlp.org/library/problem/index.php?i=101

  113. Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2011)

    Google Scholar 

  114. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)

    Google Scholar 

  115. Ruiz, J.P., Grossmann, I.E.: Water treatment network design (2009). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=24

  116. Meeraus, A.:. GLOBALLib. http://www.gamsworld.org/global/globallib.htm

  117. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1) (2003)

  118. Fourer, R., Gay, D.M., Kernighan, B.W.: The AMPL Book. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole, N. Scituate (2002)

    Google Scholar 

  119. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    MATH  MathSciNet  Google Scholar 

  120. Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Ph.D. in Chemical Engineering, Carnegie Mellon University (2006)

  121. Yanjun, W., Tao, L., Zhian, L.: A general algorithm for solving generalized geometric programming with nonpositive degree of difficulty. Comput. Optim. Appl. 44, 139–158 (2009)

    MATH  MathSciNet  Google Scholar 

  122. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Google Scholar 

  123. Vigerske, S.: COIN-OR/GAMSLinks. https://projects.coin-or.org/GAMSlinks/ (2011)

  124. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

C.A.F. is thankful for support from the National Science Foundation (CBET–0827907). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship to R.M. under Grant No. DGE-0646086 and a Royal Academy of Engineering Research Fellowship to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 195 kB)

Appendices

Appendix A: Reformulation Linearization Technique (RLT) Equations

The equations in this section are presented in factored form for clarity, but the MISO framework addresses them in expanded form. The RLT equations are updated throughout the branch-and-cut tree; any upper bound on a variable or a nonlinear term represents the upper bound at the current tree node.

Equation/Variable products may generate as many as four RLT equations (an equation with only one inequality bound produces two RLT equations; equality equations produce exactly one RLT equation):

$$ \begin{array} {l} \displaystyle\phantom{-1 \cdot {}} \Biggl( \sum_{s = 1}^{S_m} c_{m, \, s} \cdot f_{m, \, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \cdot \bigl( x_i - x_i^U \bigr) \geq 0 \\ \displaystyle-1 \cdot \Biggl( \sum _{s = 1}^{S_m} c_{m, \, s} \cdot f_{m, \, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \cdot \bigl( x_i - x_i^L \bigr) \geq 0 \\ \displaystyle-1 \cdot \Biggl( \sum _{s = 1}^{S_m} c_{m, \, s} \cdot f_{m, \, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \cdot \bigl( x_i - x_i^U \bigr) \geq 0 \\ \displaystyle\phantom{-1 \cdot {}} \Biggl( \sum _{s = 1}^{S_m} c_{m, \, s} \cdot f_{m, \, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \cdot \bigl( x_i - x_i^L \bigr) \geq 0 \\ \quad \forall \; m \in \{ 1, \, \ldots, \, M \}; \; i \in C \times B \times I \end{array} $$

Nonlinear Term/Variable products introduce four RLT equations; s∈{1,…,S} denotes a list of the quadratic, bilinear, and signomial terms:

$$ \begin{array} {ll} \phantom{-1 \cdot{}} \bigl( f_{s}(x) - f_{s}(x)^{\mathrm {UP}} \bigr) \cdot \bigl( x_i - x_i^U \bigr) \geq0 & \quad\forall s \in\{ 1, \ldots, S \}; i \in C \times B \times I \\ -1 \cdot \bigl( f_{s}(x) - f_{s}( x)^{\mathrm{UP}} \bigr) \cdot \bigl( x_i - x_i^L \bigr) \geq0 & \quad\forall s \in\{ 1, \ldots, S \}; i \in C \times B \times I \\ -1 \cdot \bigl( f_{s}(x) - f_{s}( x)^{\mathrm{LO}} \bigr) \cdot \bigl( x_i - x_i^U \bigr) \geq0 & \quad\forall s \in\{ 1, \ldots, S \}; i \in C \times B \times I \\ \phantom{-1 \cdot{}} \bigl( f_{s}(x) - f_{s}(x)^{\mathrm {LO}} \bigr) \cdot \bigl( x_i - x_i^L \bigr) \geq0 & \quad\forall s \in\{ 1, \ldots, S \}; i \in C \times B \times I \end{array} $$

Equation/Nonlinear Term products may generate up to four RLT equations; s∈{1,…,S} represents a list of the quadratic, bilinear, and signomial terms:

$$ \begin{array} {l} \displaystyle\phantom{-1 \cdot{}} \Biggl( \sum _{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \cdot \bigl( f_{s}(x) - f_{s}(x)^{\mathrm{UP}} \bigr) \geq0 \\ \displaystyle-1 \cdot \Biggl( \sum _{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \cdot \bigl( f_{s}(x) - f_{s}(x)^{\mathrm{LO}} \bigr) \geq0 \\ \displaystyle-1 \cdot \Biggl( \sum _{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \cdot \bigl( f_{s}(x) - f_{s}(x)^{\mathrm{UP}} \bigr) \geq0 \\ \displaystyle\phantom{-1 \cdot{}} \Biggl( \sum_{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \cdot \bigl( f_{s}(x) - f_{s}(x)^{\mathrm{LO}} \bigr) \geq0 \\ \quad \forall m \in\{ 1, \ldots, M \}; s \in\{ 1, \ldots, S \} \end{array} $$

Nonlinear Term/Nonlinear Term products result in up to four RLT equations:

$$ \begin{array} {ll} \phantom{-1 \cdot{}} \bigl( f_{s}(x) - f_{s}(x)^{\mathrm {UP}} \bigr) \cdot \bigl( f_{s'}(x) - f_{s'}(x)^{\mathrm {UP}} \bigr) \geq0 & \quad\forall s, s' \in\{ 1, \ldots, S \} \\ -1 \cdot \bigl( f_{s}(x) - f_{s}( x)^{\mathrm{UP}} \bigr) \cdot \bigl( f_{s'}(x) - f_{s'}(x)^{\mathrm{LO}} \bigr) \geq0 & \quad\forall s, s' \in\{ 1, \ldots, S \} \\ -1 \cdot \bigl( f_{s}(x) - f_{s}( x)^{\mathrm{LO}} \bigr) \cdot \bigl( f_{s'}(x) - f_{s'}(x)^{\mathrm{UP}} \bigr) \geq0 & \quad\forall s, s' \in\{ 1, \ldots, S \} \\ \phantom{-1 \cdot{}} \bigl( f_{s}(x) - f_{s}(x)^{\mathrm {LO}} \bigr) \cdot \bigl( f_{s'}( x) - f_{s'}(x)^{\mathrm {LO}} \bigr) \geq0 & \quad\forall s, s' \in\{ 1, \ldots, S \} \end{array} $$

Equation/Equation products may add up to four RLT equations:

$$ \begin{aligned} &\Biggl( \sum _{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \\ &\quad\times \Biggl( \sum_{s = 1}^{S_{m'}} c_{s_{m'}} \cdot f_{s_{m'}}(x) + x^T \cdot Q_{m'} \cdot x + a_{m'} \cdot x - b_{m'}^{\mathrm{UP}} \Biggr) \geq0 \\ &-1 \cdot \Biggl( \sum_{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{U}} \Biggr) \\ &\quad \times\Biggl( \sum _{s = 1}^{S_{m'}} c_{s_{m'}} \cdot f_{s_{m'}}( x) + x^T \cdot Q_{m'} \cdot x + a_{m'} \cdot x - b_{m'}^{\mathrm{LO}} \Biggr) \geq0 \\ &-1 \cdot \Biggl( \sum_{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}(x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \\ &\quad\times \Biggl( \sum _{s = 1}^{S_{m'}} c_{s_{m'}} \cdot f_{s_{m'}}( x) + x^T \cdot Q_{m'} \cdot x + a_{m'} \cdot x - b_{m'}^{\mathrm{UP}} \Biggr) \geq0 \\ & \Biggl( \sum _{s = 1}^{S_m} c_{m, s} \cdot f_{m, s}( x) + x^T \cdot Q_m \cdot x + a_m \cdot x - b_m^{\mathrm{L}} \Biggr) \\ &\quad\times \Biggl( \sum_{s = 1}^{S_{m'}} c_{s_{m'}} \cdot f_{s_{m'}}(x) + x^T \cdot Q_{m'} \cdot x + a_{m'} \cdot x - b_{m'}^{\mathrm{LO}} \Biggr) \geq0 \\ &\quad\forall m, m' \in\{ 1, \ldots, M \} \end{aligned} $$

Appendix B: Recognizing Convexity and Concavity

The MISO framework detects convexity in product \(x_{1}^{a} \cdot x_{2}^{b}\) using the conditions of Maranas and Floudas [36]. Repeating their results without proof:

Theorem Appendix B.1

[36]

If one of the following conditions holds for the product \(x_{1}^{a} \cdot x_{2}^{b}\):

  1. 1.

    x 1,x 2≥0

  2. 2.

    \(a, b \in\mathbb{Z}; a \bmod{2} = 0; b \bmod{2} = 0\)

  3. 3.

    \(a, b \in\mathbb{Z}; a \bmod{2} = 1; b \bmod{2} = 1; x_{1} \cdot x_{2} \geq0\)

  4. 4.

    \(a, b \in\mathbb{Z}; a \bmod{2} = 1; b \bmod{2} = 0; x_{1} \geq0\) (symmetrically amod2=0;bmod2=1;x 2≥0)

then \(x_{1}^{a} \cdot x_{2}^{b}\) is convex if at least two of the following are true: a≤0;b≤0;1−ab≤0. The term is concave if a,b≥0 and a+b≤1.

Theorem Appendix B.2

[36]

If one of the following conditions holds for the product \(x_{1}^{a} \cdot x_{2}^{b}\):

  1. 1.

    \(a, b \in\mathbb{Z}; a \bmod{2} = 1; b \bmod{2} = 1; x_{1} \cdot x_{2} \leq0\)

  2. 2.

    \(a, b \in\mathbb{Z}; a \bmod{2} = 1; b \bmod{2} = 0; x_{1} \leq0\) (symmetrically amod2=0;bmod2=1;x 2≤0)

then \(x_{1}^{a} \cdot x_{2}^{b}\) is concave if at least two of the following are true: a≤0;b≤0;1−ab≤0.

For general signomial terms, the MISO framework recognizes convexity/concavity on positive domains:

Theorem Appendix B.3

[36]

Signomial term \(\prod_{c = 1}^{C} x_{c}^{p_{s, c}} : x \in\mathbb {R}^{C}_{+}\) is convex if:

  1. 1.

    p s,c ≤0∀c={1,…,C} or

  2. 2.

    csuch that p s,c≥1−∑ cc p s,c and p s,c ≤0∀cc′;c={1,…,C}

and concave if p s,c ≥0∀c={1,…,C};∑ c p s,c ≤1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misener, R., Floudas, C.A. A Framework for Globally Optimizing Mixed-Integer Signomial Programs. J Optim Theory Appl 161, 905–932 (2014). https://doi.org/10.1007/s10957-013-0396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0396-3

Keywords

Navigation