Skip to main content
Log in

Separable Spherical Constraints and the Decrease of a Quadratic Function in the Gradient Projection Step

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We examine the decrease of a strictly convex quadratic function along the projected-gradient path and show that our earlier estimates obtained for the bound constraints are valid for more general feasible sets including those defined by separable spherical constraints. The result is useful for the development of in a sense optimal algorithms for the solution of some QPQC problems with separable constraints and is an important ingredient in the development of scalable algorithms for contact problems with friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bouchala, J., Dostál, Z., Sadowská, M.: Scalable Total BETI based algorithm for 3D coercive contact problems of linear elastostatics. Computing 85(3), 189–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dostál, Z.: Optimal Quadratic Programming Algorithms, with Applications to Variational Inequalities, 1st edn. SOIA, vol. 23. Springer, New York (2009)

    MATH  Google Scholar 

  3. Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A., Horyl, P.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 82(11), 1384–1405 (2010). doi:10.1002/nme.2807

    MATH  Google Scholar 

  4. Saad, Y.: Iterative Methods for Large Linear Systems. SIAM, Philadelphia (2002)

    Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Optimization. Athena Scientific, Belmont (1999)

    Google Scholar 

  6. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  7. Friedlander, A., Martínez, J.M., Raydan, M.: A new method for large scale box constrained quadratic minimization problems. Optim. Methods Softw. 5, 57–74 (1995)

    Article  Google Scholar 

  8. Dostál, Z.: Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7(3), 871–887 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hintermüller, M., Ito, K., Kunisch, K.: The primal–dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  10. Sorensen, D.C.: Minimization of a large scale quadratic function subject to spherical constraints. SIAM J. Optim. 7(1), 141–161 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46, 157–178 (1993)

    Article  MathSciNet  Google Scholar 

  13. Schöberl, J.: Solving the Signorini problem on the basis of domain decomposition techniques. Computing 60(4), 323–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optim. Appl. 30(1), 23–44 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Dostál, Z.: On the decrease of a quadratic function along the projected–gradient path. Electron. Trans. Numer. Anal. 31, 25–59 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Dostál, Z., Domorádová, M., Sadowská, M.: Superrelaxation in minimizing quadratic functions subject to bound constraints. Comput. Optim. Appl. 48(1), 23–44 (2011). doi:10.1007/s10589-009-9237-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205–208, 110–120 (2012)

    Article  Google Scholar 

  18. Haslinger, J., Kučera, R., Dostál, Z.: An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164–165, 387–408 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Education of the Czech Republic No. MSM6198910027 and by the IT4Innovations Center of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 within Operational Programme ‘Research and Development for Innovations’ funded by Structural Funds of the European Union and the budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Dostál.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchala, J., Dostál, Z. & Vodstrčil, P. Separable Spherical Constraints and the Decrease of a Quadratic Function in the Gradient Projection Step. J Optim Theory Appl 157, 132–140 (2013). https://doi.org/10.1007/s10957-012-0178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0178-3

Keywords

Navigation