Skip to main content
Log in

Gain-Scheduled Worst-Case Control on Nonlinear Stochastic Systems Subject to Actuator Saturation and Unknown Information

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for designing continuous gain-scheduled worst-case controller for a class of stochastic nonlinear systems under actuator saturation and unknown information. The stochastic nonlinear system under study is governed by a finite-state Markov process, but with partially known jump rate from one mode to another. Initially, a gradient linearization procedure is applied to describe such nonlinear systems by several model-based linear systems. Next, by investigating a convex hull set, the actuator saturation is transferred into several linear controllers. Moreover, worst-case controllers are established for each linear model in terms of linear matrix inequalities. Finally, a continuous gain-scheduled approach is employed to design continuous nonlinear controllers for the whole nonlinear jump system. A numerical example is given to illustrate the effectiveness of the developed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mahmoud, M., Shi, P., Saif, A.: Stabilization of linear switched delay systems: H 2 and H methods. J. Optim. Theory Appl. 142, 583–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shi, P., Boukas, E.K.: H-infinity control for Markovian jumping linear systems with parametric uncertainties. J. Optim. Theory Appl. 95, 75–99 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Senthilkumar, T., Balasubramaniam, P.: Delay-dependent robust H-infinity control for uncertain stochastic T-S fuzzy systems with time-varying state and input delays. Int. J. Inf. Syst. Sci. 42, 877–887 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjelloun, K., Boukas, E.K., Costa, O.L.V.: H-infinity control for linear time-delay systems with Markovian jumping parameters. J. Optim. Theory Appl. 105, 73–95 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xia, Y., Zhu, Z., Mahmoud, M.S.: H 2 control for networked control systems with Markovian data losses and delays. ICIC Express Lett. 3, 271–276 (2009)

    Google Scholar 

  6. Shi, P., Xia, Y., Liu, G., Rees, D.: On designing of sliding mode control for stochastic jump systems. IEEE Trans. Autom. Control 51, 97–103 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hu, L., Shi, P., Frank, P.: Robust sampled-data control for Markovian jump linear systems. Automatica 42, 2025–2030 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, S., Lam, J., Shi, P., Boukas, E.K., Zou, Y.: Guaranteed cost control for uncertain neutral stochastic systems via dynamic output feedback controllers. J. Optim. Theory Appl. 143, 207–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luan, X., Liu, F., Shi, P.: Neural network based stochastic optimal control for nonlinear Markov jump systems. Int. J. Innov. Comput. Inf. Control 6, 3715–3724 (2010)

    Google Scholar 

  10. Mahmoud, M., Shi, P.: Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Trans. Circuits Syst. 50, 98–105 (2003)

    Article  MathSciNet  Google Scholar 

  11. Shi, P., Boukas, E.K., Agarwal, R.: Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters. IEEE Trans. Autom. Control 44, 1592–1597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Assawinchaichote, W., Nguang, S.K., Shi, P.: Robust H fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: an LMI approach. Inf. Sci. 177, 1699–1714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J., Gu, Z., Hu, S.: H filtering for Markovian jump systems with time-varying delays. Int. J. Innov. Comput. Inf. Control 7, 1299–1310 (2011)

    Google Scholar 

  14. Nakura, G.: Stochastic optimal tracking with preview by state feedback for linear discrete-time Markovian jump systems. Int. J. Innov. Comput. Inf. Control 6, 15–28 (2010)

    Google Scholar 

  15. Zhang, L., Boukas, E.K.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45, 463–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, L., Boukas, E.K., Lam, J.: Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans. Autom. Control 53, 2458–2464 (2008)

    Article  MathSciNet  Google Scholar 

  17. Zhang, L., Boukas, E.K.: Mode-dependent H filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 45, 1462–1467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H., Boukas, E.K., Sun, F., Daniel, W.C.: Controller design for Markov jumping systems subject to actuator saturation. Automatica 42, 459–465 (2006)

    Article  MATH  Google Scholar 

  19. Hu, T., Lin, Z., Chen, B.: Analysis and design for discrete-time linear systems subject to actuator saturation. Syst. Control Lett. 45, 97–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, B., Song, S.: Robust attitude coordination control of formation flying spacecraft under control input saturation. Int. J. Innov. Comput. Inf. Control 7, 4223–4236 (2011)

    MathSciNet  Google Scholar 

  21. Song, X., Lu, J., Xu, S., Shen, H., Lu, J.: Robust stabilization of state delayed T-S fuzzy systems with input saturation via dynamic anti-windup fuzzy design. Int. J. Innov. Comput. Inf. Control 7, 6665–6676 (2011)

    Google Scholar 

  22. Kanthaphayao, Y., Chunkag, V., Kamnarn, U.: Fuzzy gain scheduling of PI controller for distributed control of parallel AC/DC converters. Int. J. Innov. Comput. Inf. Control 7, 6757–6772 (2011)

    Google Scholar 

  23. Lee, T.E., Su, J.P., Yu, K.W.: Fuzzy gain scheduled Alpha-Beta-Gamma filter design based on particle swarm optimization method. ICIC Express Lett. 4, 2305–2310 (2010)

    Google Scholar 

  24. Kanthaphayao, Y., Chunkag, V., Kamnarn, U.: Fuzzy gain scheduling of PI controller for distributed control of parallel AC/DC converters. Int. J. Innov. Comput. Inf. Control 7, 6757–6772 (2011)

    Google Scholar 

  25. Maggio, M., Leva, A.: Benchmark analysis of a control-theoretical approach to feedback scheduling. ICIC Express Lett. 4, 2063–2068 (2010)

    Google Scholar 

  26. Yin, Y., Liu, F., Shi, P.: Finite-time continuous gain-scheduled control on stochastic hyperchaotic systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224, 679–688 (2010)

    Article  Google Scholar 

  27. Yin, Y., Liu, F., Shi, P.: Finite-time gain-scheduled control on stochastic bioreactor systems with partially known transition jump rates. Circuits Syst. Signal Process. 30, 609–627 (2010)

    Article  MathSciNet  Google Scholar 

  28. Yin, Y., Shi, P., Liu, F.: Gain scheduled PI tracking control on stochastic nonlinear systems with partially known transition probabilities. J. Franklin Inst. 348, 685–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marcelo, C., Stanislaw, H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Fuzzy Syst. 7, 133–142 (1999)

    Article  Google Scholar 

  30. Mao, X.: Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79, 45–67 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Basic Research Program (973), China (2012CB215202), the 111 Project (B12018), the National Natural Science Foundation of China (61174058, 61134007, 61134001), and the Fundamental Research Funds for the Central Universities (JUDCF10032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Yin.

Additional information

Communicated by Po-Lung Yu.

Appendix

Appendix

1.1 Proof of Proposition 3.1

Proof

The Lyapunov–Krasovskii function for system (2) is constructed by using symmetric positive definite matrices P k (i):

$$V\bigl(x(t),i\bigr)=x^\mathrm{T}(t)P_{k}(i)x(t), \quad i\in \varLambda. $$

The time derivative of V(x(t),i) for system (2) is

Recalling Lemma 3.1, one can define that the system state belongs to a set Θ(H k (i)), and ε(P k (i),1)⊂Θ(H k (i)), then σ(u(t)) can be described as \(\sigma (u(t))=\mathit{co}\{[D_{t}K_{k}(i)+D_{t}^{-}H_{k}(i)]x(t) : t\in[1,2^{m}]\}\).

Obviously, a sufficient stabilizable condition for system (2) is that all the vertex of the convex hull satisfy the desired stable requirements.

One can define

Since \(\sum_{j=1}^{N}\pi_{ij}=0\), one can obtain

$$\varPhi_{1k}(i)=\varPhi_{1k}(i)+\sum _{j=1}^{N}\pi_{ij}\bigl[\hat {A}^\mathrm{T}_{k}(i)P_{k}(i)+P_{k}(i) \hat{A}_{k}(i)\bigr], $$

where

$$\hat {A}_{k}(i)=A_{k}(i)+B_{k}(i) \bigl(D_{t}K_{k}(i)+D_{t}^{-}H_{k}(i) \bigr),\quad \forall t\in\bigl[1,2^{m}\bigr]. $$

Recalling Assumption 2.1, one can also obtain

$$\varPhi_{1k}(i)=\varPhi_{2k}(i)+\sum _{j\in \varLambda_{UK}^{i}}\pi_{ij}\bigl[\hat{A}^\mathrm {T}_{k}(i)P_{k}(i)+P_{k}(i)\hat{A}_{k}(i)+P_{k}(j) \bigr], $$

where

$$\varPhi_{2k}(i)=\biggl(1+\sum_{j\in \varLambda_{K}^{i}} \pi_{ij}\biggr) \bigl(\hat{A}^\mathrm {T}_{k}(i)P_{k}(i)+P_{k}(i) \hat{A}_{k}(i)\bigr)+\biggl(\sum_{j\in \varLambda_{K}^{i}} \pi_{ij}\biggr)P_{k}(j). $$

Subsequently, for i,jΛ, π ij ≥0, ij, and \(j\in\varLambda_{UK}^{i}\), if π ii is known, the following condition (19) can be guaranteed both by (5), (6) under the condition (8).

$$ \varPhi_{1k}(i)<0, \quad\forall t\in\bigl[1,2^{m}\bigr]. $$
(19)

On the other hand, for \(j\in\varLambda_{UK}^{i}\), if π ii is unknown, Φ 1k (i) can be described as:

As we known, \(\pi_{ii}=-\sum_{j=1,\,j\neq i}^{N}<0\), then, for dynamic system (2), condition (19) can be guaranteed both by (5), (6), (7) under the condition (8).

Obviously, condition (19) implies

$$\varGamma V\bigl(x(t),i\bigr)<0,\quad\forall t\in\bigl[1,2^{m}\bigr]. $$

Therefore, the dynamic MJLS (2) is stochastic stable with w(t)=0, and this concludes the proof. □

1.2 Proof of Theorem 3.1

Proof

Introduce the following cost function for system (2) as T>0

$$ J(T)=E\biggl\{\int_0^{T}z^\mathrm{T}(t)z(t)\,dt \biggr\}- \lambda^{2}E\biggl\{\int_0^{T}w^\mathrm{T}(t)w(t)\,dt \biggr\}. $$
(20)

Under zero initial condition, index J(T) can be rewritten as

(21)

Under condition (13), it follows that

(22)

where \(\triangle_{k}(i)=D_{t}K_{k}(i)+D_{t}^{-}H_{k}(i)\).

Thus,

$$ J(T)\leq E\int_0^{T}\bigl\{S\cdot X_{1k}\cdot S^\mathrm{T}\bigr\}\,dt, $$
(23)

where S=[x T(t) w T(t)],

By using Schur complement for X 1, one can obtain

$$X_{2k}=\left [ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} M_{2} & P_{k}(i)B_{wk}(i) & (C_{k}(i)+D_{k}(i)\triangle_{k}(i))^\mathrm{T}\\[3pt] \ast& -\lambda^{2}I & D_{wk}^{\mathrm{T}}(i)\\[3pt] \ast& \ast& -I \end{array} \right ], $$

where \(M_{2}=\hat{A}^{\mathrm{T}}_{k}(i)P_{k}(i)+P_{k}(i)\hat{A}_{k}(i)+\sum_{j=1}^{N}\pi_{ij}P_{k}(j)\).

Along the same line as in the proof of Proposition 3.1, one can obtain:

$$X_{2k}=\left [ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} M_{3} & P_{k}(i)B_{wk}(i) & (C_{k}(i)+D_{k}(i)\triangle_{k}(i))^\mathrm{T}\\[3pt] \ast& -\lambda^{2}I & D_{wk}^{\mathrm{T}}(i)\\[3pt] \ast& \ast& -I \end{array} \right ]+\left [ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} M_{4} & 0 & 0\\ \ast& 0 & 0\\ \ast& \ast& 0 \end{array} \right ], $$

where

Clearly, X 2k <0 can be reduced to inequality (5), by denoting w(t)=0, it can also be guaranteed by inequalities (10)–(12) under the condition (13), so the dynamic system (2) is stochastic stable in the proposed region. On the other hand, for T→∞, X 2k <0 results in J(∞)<−V(∞)<0, that is,

$$ E\biggl\{\int_0^{\infty}z^\mathrm{T}(t)z(t)\,dt \biggr\}\leq \lambda^{2}E\biggl\{\int_0^{\infty}w^\mathrm{T}(t)w(t)\,dt \biggr\}. $$
(24)

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, P., Yin, Y. & Liu, F. Gain-Scheduled Worst-Case Control on Nonlinear Stochastic Systems Subject to Actuator Saturation and Unknown Information. J Optim Theory Appl 156, 844–858 (2013). https://doi.org/10.1007/s10957-012-0142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0142-2

Keywords

Navigation