Skip to main content
Log in

An Inexact Proximal-Type Algorithm in Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the strong convergence of an inexact proximal-point algorithm. It is known that the proximal-point algorithm converges weakly to a solution of a maximal monotone operator, but fails to converge strongly. Solodov and Svaiter (Math. Program. 87:189–202, 2000) introduced a new proximal-type algorithm to generate a strongly convergent sequence and established a convergence result in Hilbert space. Subsequently, Kamimura and Takahashi (SIAM J. Optim. 13:938–945, 2003) extended the Solodov and Svaiter result to the setting of uniformly convex and uniformly smooth Banach space. On the other hand, Rockafellar (SIAM J. Control Optim. 14:877–898, 1976) gave an inexact proximal-point algorithm which is more practical than the exact one. Our purpose is to extend the Kamimura and Takahashi result to a new inexact proximal-type algorithm. Moreover, this result is applied to the problem of finding the minimizer of a convex function on a uniformly convex and uniformly smooth Banach space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal-point iterations in a Hilbert space. Math. Program. 87, 189–202 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Rockafellar, R.T.: Monotone operators and the proximal-point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Martinet, B.: Regularisation d’inequations variationnelles par approximations successives. Rev. Francaise d’Automatique Inform. Rech. Opér. 4, 154–159 (1970)

    MathSciNet  Google Scholar 

  5. Brézis, H., Lions, P.L.: Produits infinis de resolvants. Israel J. Math. 29, 329–345 (1978)

    MATH  MathSciNet  Google Scholar 

  6. Lions, P.L.: Une methode iterative de resolution d’une inequation variationnelle. Israel J. Math. 31, 204–208 (1978)

    MATH  MathSciNet  Google Scholar 

  7. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guler, O.: On the convergence of the proximal-point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  Google Scholar 

  9. Solodov, M.V., Svaiter, B.F.: A hybrid projection proximal-point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kamimura, S., Takahashi, W.: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set-Valued Anal. 8, 361–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113–123 (1998)

    MathSciNet  Google Scholar 

  13. Chen, G.Y., Teboulle, M.: A proximal-based decomposition method for convex minimization problem. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  Google Scholar 

  14. Han, D.R., He, B.S.: A new accuracy criterion for approximate proximal-point algorithms. J. Math. Anal. Appl. 263, 343–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jung, J.S., Morales, C.H.: The Mann process for perturbed m-accretive operators in Banach spaces. Nonlinear Anal. 46, 231–243 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 149, 75–88 (1970)

    MATH  MathSciNet  Google Scholar 

  19. Xu, Z.B., Roach, G.F.: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 157, 189–210 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Additional information

Communicated by S. Schaible.

L.C. Zeng’s research was partially supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China and by the Dawn Program Foundation in Shanghai.

J.C. Yao’s research was partially supported by the National Science Council of the Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L.C., Yao, J.C. An Inexact Proximal-Type Algorithm in Banach Spaces. J Optim Theory Appl 135, 145–161 (2007). https://doi.org/10.1007/s10957-007-9261-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9261-6

Keywords

Navigation