Skip to main content
Log in

New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a new constraint qualification which guarantees strong duality between a cone-constrained convex optimization problem and its Fenchel-Lagrange dual. This result is applied to a convex optimization problem having, for a given nonempty convex cone K, as objective function a K-convex function postcomposed with a K-increasing convex function. For this so-called composed convex optimization problem, we present a strong duality assertion, too, under weaker conditions than the ones considered so far. As an application, we rediscover the formula of the conjugate of a postcomposition with a K-increasing convex function as valid under weaker conditions than usually used in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Combari, C., Laghdir, M., Thibault, L.: Sous-différentiels de fonctions convexes composées. Ann. Sci. Math. Qué. 18(2), 119–148 (1994)

    MATH  MathSciNet  Google Scholar 

  2. Combari, C., Laghdir, M., Thibault, L.: On subdifferential calculus for convex functions defined on locally convex spaces. Ann. Sci. Math. Qué. 23(1), 23–36 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Lemaire, B.: Application of a Subdifferential of a Convex Composite Functional to Optimal Control in Variational Inequalities. Lecture Notes in Economics and Mathematical Systems, vol. 255, pp. 103–117. Springer, Berlin (1985)

    Google Scholar 

  4. Levin, V.L.: Sur le Sous-Différentiel de Fonctions Composées. Doklady Akademii Nauk, vol. 194, pp. 28–29. Belorussian Academy of Sciences (1970)

  5. Pennanen, T.: Graph-convex mappings and K-convex functions. J. Convex Anal. 6(2), 235–266 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Volle, M.: Duality principles for optimization problems dealing with the difference of vector-valued convex mappings. J. Optim. Theory Appl. 114(1), 223–241 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boţ, R.I., Wanka, G.: Duality for composed convex functions with applications in location theory. In: Habenicht, W., Scheubrein, B., Scheubrein, R. (eds.) Multi-Criteria- und Fuzzy-Systeme in Theorie und Praxis, pp. 1–18. Deutscher Universitäts-Verlag, Wiesbaden (2003)

    Google Scholar 

  8. Boţ, R.I., Hodrea, I.B., Wanka, G.: Farkas-type results for inequality systems with composed convex functions via conjugate duality. J. Math. Anal. Appl. 322(1), 316–328 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, II: Advanced Theory and Bundle Methods. Grundlehren der Mathematischen Wissenschaften, vol. 306. Springer, Berlin (1993)

    MATH  Google Scholar 

  10. Hiriart-Urruty, J.B., Martínez-Legaz, J.E.: New formulas for the Legendre-Fenchel transform. J. Math. Anal. Appl. 288(2), 544–555 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kutateladže, S.S.: Changes of variables in the Young transformation. Sov. Math. Dokl. 18(2), 1039–1041 (1977)

    Google Scholar 

  12. Boţ, R.I., Kassay, G., Wanka, G.: Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 127(1), 45–70 (2005)

    Article  MathSciNet  Google Scholar 

  13. Boţ, R.I., Grad, S.M., Wanka, G.: Fenchel-Lagrange versus geometric duality in convex optimization. J. Optim. Theory Appl. 129(1), 33–54 (2006)

    Article  MathSciNet  Google Scholar 

  14. Boţ, R.I., Wanka, G.: Farkas-type results with conjugate functions. SIAM J. Optim. 15(2), 540–554 (2005)

    Article  Google Scholar 

  15. Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal.: Theory Methods Appl. 64(6), 1367–1381 (2006)

    Article  Google Scholar 

  16. Frenk, J.B.G., Kassay, G.: On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality. J. Optim. Theory Appl. 102(2), 315–343 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  18. Wolkowicz, H.: Some applications of optimization in matrix theory. Linear Algebra Appl. 40, 101–118 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Elster, K.-H., Reinhardt, R., Schäuble, M., Donath, G.: Einführung in die nichtlineare Optimierung. Teubner, Leipzig (1977)

    MATH  Google Scholar 

  20. Zălinescu, C.: Duality for vectorial nonconvex optimization by convexification and applications. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I-a Mat. 29(3), 15–34 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wanka.

Additional information

Communicated by T. Rapcsák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boţ, R.I., Grad, S.M. & Wanka, G. New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems. J Optim Theory Appl 135, 241–255 (2007). https://doi.org/10.1007/s10957-007-9247-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9247-4

Keywords

Navigation