Skip to main content
Log in

Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We derive an implementable algorithm for solving nonlinear stochastic optimization problems with failure probability constraints using sample average approximations. The paper extends prior results dealing with a failure probability expressed by a single measure to the case of failure probability expressed in terms of multiple performance measures. We also present a new formula for the failure probability gradient. A numerical example addressing the optimal design of a reinforced concrete highway bridge illustrates the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Royset, J.O., Polak, E.: Implementable algorithm for stochastic programs using sample average approximations. J. Optim. Theory Appl. 122, 157–184 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Wiley, New York (1996)

    Google Scholar 

  3. Liu, P.-L., Kuo, C.-Y.: Safety evaluation of the upper structure of bridge based on concrete nondestructive tests. In: Der Kiureghian, A., Madanat, S., Pestana, J.M. (eds.) Applications of Statistics and Probability in Civil Engineering, pp. 1683–1688. Millpress, Rotterdam (2003)

    Google Scholar 

  4. Akgul, F., Frangopol, D.M.: Probabilistic analysis of bridge networks based on system reliability and Monte Carlo simulation. In: Der Kiureghian, A., Madanat, S., Pestana, J.M. (eds.) Applications of Statistics and Probability in Civil Engineering, pp. 1633–1637. Millpress, Rotterdam (2003)

    Google Scholar 

  5. Holicky, M., Markova, J.: Reliability analysis of impacts due to road vehicles. In: Der Kiureghian, A., Madanat, S., Pestana, J.M. (eds.) Applications of Statistics and Probability in Civil Engineering, pp. 1645–1650. Millpress, Rotterdam (2003)

    Google Scholar 

  6. Ermoliev, Y.: Stochastic quasigradient methods. In: Ermoliev, Y., Wets, R.J.-B. (eds.) Numerical Techniques for Stochastic Optimization. Springer, New York (1988)

    Google Scholar 

  7. Benveniste, A., Metivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, New York (1990)

    MATH  Google Scholar 

  8. Marti, K.: Stochastic Optimization Methods. Springer, Berlin (2005)

    MATH  Google Scholar 

  9. Ruszczynski, A., Shapiro, A.: Stochastic Programming. Elsevier, New York (2003)

    MATH  Google Scholar 

  10. Shapiro, A., Wardi, Y.: Convergence analysis of stochastic algorithms. Math. Oper. Res. 21, 615–628 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sakalauskas, L.L.: Nonlinear stochastic programming by Monte-Carlo estimators. Eur. J. Oper. Res. 137, 558–573 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Royset, J.O., Der Kiureghian, A., Polak, E.: Optimal design with probabilistic objective and constraints. J. Eng. Mech. 132, 107–118 (2006)

    Article  Google Scholar 

  13. Uryasev, S.: Derivatives of probability functions and some applications. Ann. Oper. Res. 56, 287–311 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marti, K.: Differentiation formulas for probability functions: the transformation method. Math. Program. 75, 201–220 (1996)

    MathSciNet  Google Scholar 

  15. Tretiakov, G.: Stochastic quasi-gradient algorithms for maximization of the probability function. A new formula for the gradient of the probability function. In: Marti, K. (ed.) Stochastic Optimization Techniques, pp. 117–142. Springer, New York (2002)

    Google Scholar 

  16. Polak, E.: Optimization Algorithms and Consistent Approximations. Springer, New York (1997)

    MATH  Google Scholar 

  17. Deak, I.: Three digit accurate multiple normal probabilities. Numer. Math. 35, 369–380 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ditlevsen, O., Oleson, R., Mohr, G.: Solution of a class of load combination problems by directional simulation. Struct. Saf. 4, 95–109 (1987)

    Article  Google Scholar 

  19. Bjerager, P.: Probability integration by directional simulation. J. Eng. Mech. 114, 1288–1302 (1988)

    Google Scholar 

  20. Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    MATH  Google Scholar 

  21. Rubinstein, R.Y., Shapiro, A.: Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    MATH  Google Scholar 

  23. Polak, E., Qi, L., Sun, D.: First-order algorithms for generalized semi-infinite min-max problems. Comput. Optim. Appl. 13, 137–161 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, New York (1991)

    MATH  Google Scholar 

  25. van der Vaart, A., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer, New York (1996)

    MATH  Google Scholar 

  26. Matlab, Version 6.5, Mathworks Inc., Natick, MA (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Royset.

Additional information

Communicated by P. Tseng.

This work was sponsored by the Research Associateship Program, National Research Council. The authors are grateful for the valuable insight from Professors Alexander Shapiro, Evarist Gine, and Jon A. Wellner. The authors also thank Professor Tito Homem-de-Mello for commenting on an early draft of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royset, J.O., Polak, E. Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions. J Optim Theory Appl 133, 1–18 (2007). https://doi.org/10.1007/s10957-007-9178-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9178-0

Keywords

Navigation