Skip to main content

Advertisement

Log in

Nonequilibrium Oscillations, Probability Angular Momentum, and the Climate System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Though the Boltzmann–Gibbs framework of equilibrium statistical mechanics has been successful in many arenas, it is clearly inadequate for describing many interesting natural phenomena driven far from equilibrium. The simplest step towards that goal is a better understanding of nonequilibrium steady-states (NESS). Here we focus on one of the distinctive features of NESS—persistent probability currents—and their manifestations in our climate system. We consider the natural variability of the steady-state climate system, which can be approximated as a NESS. These currents must form closed loops, which are odd under time reversal, providing the crucial difference between systems in thermal equilibrium and NESS. Seeking manifestations of such current loops leads us naturally to the notion of “probability angular momentum” and oscillations in the space of observables. Specifically, we will relate this concept to the asymmetric part of certain time-dependent correlation functions. Applying this approach, we propose that these current loops give rise to preferred spatio-temporal patterns of natural climate variability that take the form of climate oscillations such as the El-Niño Southern Oscillation (ENSO) and the Madden–Julian Oscillation (MJO). In the space of climate indices, we observe persistent currents and define a new diagnostic for these currents: the probability angular momentum (\(\mathscr {L}\)). Using the observed climatic time series of ENSO and MJO, we compute both the averages and the distributions of \(\mathscr {L}\). These results are in good agreement with the analysis from a linear Gaussian model. We propose that, in addition to being a new quantification of climate oscillations across models and observations, the probability angular momentum provides a meaningful characterization for all statistical systems in NESS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In much of the physics community, “phase space” is a term used for the space of xp (coordinate and momentum). Significantly, these variables are even/odd under time reversal. In this paper, however, we use this term in the sense common in the dynamical systems and climate science communities. In the cases we consider here, there is no reason to regard the variables (e.g., temperature and volume, or two amplitudes of a principal component analysis) as having different symmetry under time reversal. For many in the community of statistical physics, the familiar term in this context is “configuration space.” We will use the two terms interchangeably and assume there is no confusion.

  2. Below, we will be considering time-dependent distributions, which we denote by \(P\left( C;t\right) \). The superscript (\(^{*}\)) signifies a stationary distribution.

  3. Though the form of our equation appears to be for continuous t and discrete C, it is simple to write equations for other types of variables, e.g., continuous t and C. Note that we have restricted ourselves to systems evolving with time-independent rates.

  4. In this form, the criterion for the W’s to satisfy DB appears to depend on \(P^{*}\). Kolmogorov [37] provided a criterion which involves only the W’s.

  5. Note that the discrete version of the \(\delta \) in the noise correlation is a Kronecker delta of the time steps divided by \(\varepsilon \). Note also that there is no correlation between \({\mathbf {x}}\left( t\right) \) and \(\varvec{\eta }\left( t\right) \), so that \( < {\mathbf {x}}\left( t\right) \varvec{\eta }\left( t\right) > \equiv 0\).

  6. The \(D_{\alpha \beta }\) here is the same as the one introduced above, the only difference being it is restricted to be x-independent in a LGM.

  7. To avoid confusion, we use different notation for quantities in a LGM from the general case, e.g., p and \({\mathbf {j}}\) instead of P and \({\mathbf {K}}\).

  8. Here, \( <\mathscr {O}> ^{*}\) refers to the average in the stationary state: \(\int \mathscr {O}\left( {\mathbf {x}}\right) p^{*}\left( {\mathbf {x}}\right) d{\mathbf {x}}\).

  9. Note that we use the same letter for both the density of a quantity and the total, the former having an additional argument, \({\mathbf {x}}\).

  10. Introduced in 1940 by Levy [43], this concept was subsequently developed in a series of articles. For a modern review and further generalizations, see, e.g., Ref. [44]. Most recently, it has been exploited in the context of noisy couple RC circuits [45, 46].

  11. Note that “diffusion” in this case also carries these units, as it is the noise covariance matrix.

References

  1. Schmidt, G.: The physics of climate modeling. Phys. Today 60, 72 (2007). https://doi.org/10.1063/1.2709569

    Article  ADS  Google Scholar 

  2. Reichl, L.E., Prigogine, I.: A Modern Course in Statistical Physics. University of Texas Press, Austin (1980)

    Google Scholar 

  3. Gallavotti, G.: Nonequilibrium and Irreversibility. Springer, Cham (2014)

    MATH  Google Scholar 

  4. Parrondo, J.M.R., Horowitz, J.M., Sagawa, T.: Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Google Scholar 

  5. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    ADS  Google Scholar 

  6. Hill, T.L.: Studies in irreversible thermodynamics iv. diagrammatic representation of steady state fluxes for unimolecular systems. J. Theor. Biol. 10(3), 442–459 (1966)

    Google Scholar 

  7. Zia, R.K.P., Schmittmann, B.: Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states. J. Stat. Mech. Theory Exp. 2007(07), P07012 (2007)

    MATH  Google Scholar 

  8. Suzuki, N., Fox-Kemper, B., Hamlington, P.E., Van Roekel, L.P.: Surface waves affect frontogenesis. J. Geophys. Res. Oceans 121, 1–28 (2016)

    Google Scholar 

  9. Shkarayev, M.S., Zia, R.K.P.: Exact results for a simple epidemic model on a directed network: explorations of a system in a nonequilibrium steady state. Phys. Rev. E 90(3), 032107 (2014)

    ADS  Google Scholar 

  10. Mellor, A., Mobilia, M., Zia, R.K.P.: Characterization of the nonequilibrium steady state of a heterogeneous nonlinear q-voter model with zealotry. Europhys. Lett. (EPL) 113(4), 48001 (2016)

    ADS  Google Scholar 

  11. Mellor, A., Mobilia, M., Zia, R.K.P.: Heterogeneous out-of-equilibrium nonlinear \(q\)-voter model with zealotry. Phys. Rev. E 95, 012104 (2017)

    ADS  Google Scholar 

  12. Zia, R.K.P., Weiss, J.B., Mandal, D., Fox-Kemper, B.: Manifest and subtle cyclic behavior in nonequilibrium steady states. J. Phys. 750, 012003 (2016)

    Google Scholar 

  13. Lorenz, E.N.: Available potential energy and the maintenance of the general circulation. Tellus 7(2), 157–167 (1955)

    ADS  Google Scholar 

  14. Peixoto, J.P., Oort, A.H.: Physics of Climate. AIP-Press, New York (1992)

    Google Scholar 

  15. Pauluis, O., Held, I.M.: Entropy budget of an atmosphere in radiative-convective equilibrium. part i: maximum work and frictional dissipation. J. Atmos. Sci. 59(2), 125–139 (2002)

    ADS  Google Scholar 

  16. Lucarini, V.: Thermodynamic efficiency and entropy production in the climate system. Phys. Rev. E 80, 021118 (2009). https://doi.org/10.1103/PhysRevE.80.021118

    Article  ADS  Google Scholar 

  17. Lucarini, V., Blender, R., Herbert, C., Ragone, F., Pascale, S., Wouters, J.: Mathematical and physical ideas for climate science. Rev. Geophys. 52(4), 809–859 (2014)

    ADS  Google Scholar 

  18. Laliberté, F., Zika, J., Mudryk, L., Kushner, P.J., Kjellsson, J., Döös, K.: Constrained work output of the moist atmospheric heat engine in a warming climate. Science 347(6221), 540–543 (2015). https://doi.org/10.1126/science.1257103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, C.: A review of ENSO theories. Natl. Sci. Rev. 5(6), 813–825 (2018)

    Google Scholar 

  20. Wang, C., Deser, C., Yu, J.Y., DiNezio, P., Clement, A.: El niño and southern oscillation (ENSO): a review. In: Glynn, P.W., Manzello, D.P., Enochs, I.C. (eds.) Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, pp. 85–106. Springer, Dordrecht (2017)

    Google Scholar 

  21. Meinen, C.S., McPhaden, M.J.: Observations of warm water volume changes in the equatorial pacific and their relationship to El Niño and La Niña. J. Clim. 13, 3551–3559 (2000)

    ADS  Google Scholar 

  22. Zhang, C.: Madden-Julian oscillation. Rev. Geophys. (2005). https://doi.org/10.1029/2004RG000158

  23. Newman, M., Alexander, M.A., Ault, T.R., Cobb, K.M., Deser, C., Di Lorenzo, E., Mantua, N.J., Miller, A.J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D.J., Phillips, A.S., Scott, J.D., Smith, C.A.: The pacific decadal oscillation, revisited. J. Clim. 29(12), 4399–4427 (2016)

    ADS  Google Scholar 

  24. Knight, J.R., Folland, C.K., Scaife, A.A.: Climate impacts of the atlantic multidecadal oscillation. Geophys. Res. Lett. (2006). https://doi.org/10.1029/2006GL026242

  25. Neale, R.B., Richter, J.H., Jochum, M.: The impact of convection on ENSO: from a delayed oscillator to a series of events. J. Clim. 21(22), 5904–5924 (2008)

    ADS  Google Scholar 

  26. Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H., Roundy, P.E.: Convectively coupled equatorial waves. Rev. Geophys. (2009). https://doi.org/10.1029/2008RG000266

  27. Timmermann, A., An, S.I., Kug, J.S., Jin, F.F., Cai, W., Capotondi, A., Cobb, K.M., Lengaigne, M., McPhaden, M.J., Stuecker, M.F., Stein, K., Wittenberg, A.T., Yun, K.S., Bayr, T., Chen, H.C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.Y., Li, T., Luo, J.J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.H., Yeh, S.W., Yoon, J., Zeller, E., Zhang, X.: El niño-southern oscillation complexity. Nature 559(7715), 535–545 (2018). https://doi.org/10.1038/s41586-018-0252-6

    Article  ADS  Google Scholar 

  28. Wheeler, M.C., Hendon, H.H.: An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Monthly Weather Rev. 132(8), 1917–1932 (2004)

    ADS  Google Scholar 

  29. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Phys. Rev. 36, 823–841 (1930)

    ADS  MATH  Google Scholar 

  30. Penland, C., Magorian, T.: Prediction of Nino 3 sea surface temperatures using linear inverse modeling. J. Clim. 6(6), 1067–1076 (1993)

    ADS  Google Scholar 

  31. Penland, C., Matrosova, L.: Prediction of tropical atlantic sea surface temperatures using linear inverse modeling. J. Clim. 11, 483–496 (1998)

    ADS  Google Scholar 

  32. Alexander, M.A., Matrosova, L., Penland, C., Scott, J.D., Chang, P.: Forecasting pacific ssts: linear inverse model predictions of the PDO. J. Clim. 21(2), 385–402 (2008)

    ADS  Google Scholar 

  33. Hawkins, E., Sutton, R.: Decadal predictability of the atlantic ocean in a coupled gcm: forecast skill and optimal perturbations using linear inverse modeling. J. Clim. 22(14), 3960–3978 (2009)

    ADS  Google Scholar 

  34. Cavanaugh, N.R., Allen, T., Subramanian, A., Mapes, B., Seo, H., Miller, A.J.: The skill of atmospheric linear inverse models in hindcasting the Madden-Julian oscillation. Clim. Dyn. 44(3), 897–906 (2015)

    Google Scholar 

  35. Dias, D.F., Subramanian, A., Zanna, L., Miller, A.J.: Remote and local influences in forecasting pacific sst: a linear inverse model and a multimodel ensemble study. Clim. Dyn. 52(5–6), 3183–3201 (2018)

    Google Scholar 

  36. Stevenson, S., Rajagopalan, B., Fox-Kemper, B.: Generalized linear modeling of the el nino/southern oscillation with application to seasonal forecasting and climate change projections. J. Geophys. Res. Oceans 118(8), 3764–3781 (2013)

    ADS  Google Scholar 

  37. Kolmogoroff, A.: Zur theorie der markoffschen ketten. Math. Ann. 112, 115–160 (1936)

    MathSciNet  MATH  Google Scholar 

  38. Riskin, H.: The Fokker-Planck equation methods of solution and applications, 2nd edn. Springer-Verlag, Berlin (1989)

    Google Scholar 

  39. Lax, M.: Fluctuations from the nonequilibrium steady state. Rev. Mod. Phys. 32(1), 25 (1960)

    ADS  MATH  Google Scholar 

  40. Weiss, J.B.: Coordinate invariance in stochastic dynamical systems. Tellus A 55(3), 208–218 (2003)

    ADS  MathSciNet  Google Scholar 

  41. Russell, D.I., Blythe, R.A.: Macroscopically observable probability currents in finite populations. J. Stat. Mech. Theory Exp. 2013(06), P06008 (2013)

    MathSciNet  Google Scholar 

  42. Ciliberto, S., Imparato, A., Naert, A., Tanase, M.: Heat flux and entropy produced by thermal fluctuations. Phys. Rev. Lett. 110, 180601 (2013). https://doi.org/10.1103/PhysRevLett.110.180601

    Article  ADS  Google Scholar 

  43. Lévy, M.P.: Le mouvement brownien plan. Am. J. Math 62(1), 487–550 (1940)

    MathSciNet  MATH  Google Scholar 

  44. Helmes, K., Schwane, A.: Levy’s stochastic area formula in higher dimensions. J. Funct. Anal. 54(2), 177–192 (1983)

    MathSciNet  MATH  Google Scholar 

  45. Ghanta, A., Neu, J.C., Teitsworth, S.: Fluctuation loops in noise-driven linear dynamical systems. Phys. Rev. E 95, 032128 (2017)

    ADS  MathSciNet  Google Scholar 

  46. Gonzalez, J.P., Neu, J.C., Teitsworth, S.W.: Experimental metrics for detection of detailed balance violation. Phys. Rev. E 99, 022143 (2019)

    ADS  Google Scholar 

  47. Batchelor, G.K.: Diffusion in a field of homogeneous turbulence. J. Fluid Mech. 214, 535–557 (1952)

    Google Scholar 

  48. Dukowicz, J., Smith, R.: Stochastic theory of compressible turbulent fluid transport. Phys. Fluids 9, 3523–3529 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  49. LaCasce, J.H.: Statistics from Lagrangian observations. Prog. Oceanogr. 77, 1–29 (2008)

    ADS  MATH  Google Scholar 

  50. Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., McIntyre, A., et al.: On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8(6), 699–735 (1993)

    ADS  Google Scholar 

  51. Wolter, K., Timlin, M.S.: El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 31(7), 1074–1087 (2011)

    Google Scholar 

  52. Trouet, V., Van Oldenborgh, G.J.: Knmi climate explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Res. 69(1), 3–13 (2013)

    Google Scholar 

  53. Kiladis, G.N., Dias, J., Straub, K.H., Wheeler, M.C., Tulich, S.N., Kikuchi, K., Weickmann, K.M., Ventrice, M.J.: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Weather Rev. 142(5), 1697–1715 (2014)

    ADS  Google Scholar 

  54. Winkler, C.R., Newman, M., Sardeshmukh, P.D.: A linear model of wintertime low-frequency variability. part i: formulation and forecast skill. J. Clim. 14(24), 4474–4494 (2001)

    ADS  Google Scholar 

  55. Kirtman, B., Shukla, J., Balmaseda, M., Graham, N., Penland, C., Xue, Y., Zebiak, S.: Current status of ENSO forecast skill. A report to the Climate Variability and Predictability (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working Group on Seasonal to Interannual Prediction (2002)

  56. Hawkins, E., Sutton, R.: Decadal predictability of the atlantic ocean in a coupled gcm: forecast skill and optimal perturbations using linear inverse modeling. J. Clim. 22(14), 3960–3978 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF INSPIRE Award #1245944 and NSF DMR #1507371. Work of JBW was partially carried out during a stay at the Institute for Marine and Atmospheric research Utrecht (Utrecht University, NL) which was supported by the Netherlands Centre for Earth System Science. Three of us (JBW, BF-K, RKPZ) are grateful for the hospitality of the MPIPKS, where some of this work was carried out during a workshop Climate Fluctuations and Non-Equilibrium Statistical Mechanics: an Interdisciplinary Dialogue in the summer of 2017. We would like to thank Kevin Bassler, Ronald Dickman and Beate Schmittmann for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Weiss.

Additional information

Communicated by Valerio Lucarini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, J.B., Fox-Kemper, B., Mandal, D. et al. Nonequilibrium Oscillations, Probability Angular Momentum, and the Climate System. J Stat Phys 179, 1010–1027 (2020). https://doi.org/10.1007/s10955-019-02394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02394-1

Keywords

Navigation