Skip to main content
Log in

Intermittent Waiting-Time Noises Through Embedding Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An intermittent two-state noise can be modelled through a renewal process characterized by two different time scales. A (four state) Markovian embedding of this non-Markovian process is presented. The equivalence between the renewal approach and the enlarged master equation is shown. Analytical results for n-time moments of the intermittent dichotomic noise are obtained. The Monte Carlo simulations supports our analytical results. The advantage of using the enlarged master equation for calculating higher order moments is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cox, D.R., Isham, V.: Point Process. Chapman and Hall, New York (1980)

    MATH  Google Scholar 

  2. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971). Ch. XI, Sect. 4

    MATH  Google Scholar 

  3. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Acadepic Press, New York (1975)

    MATH  Google Scholar 

  4. Sanford, J., Brewer, W., Smith, F., Baumgardner, J.: The waiting time problem in a model hominin population. Theor. Biol. Med. Model. 12, 18 (2015). https://doi.org/10.1186/s12976-015-0016-z

    Article  Google Scholar 

  5. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  6. Scher, H., Lax, M.: Stochastic transport in a disordered solid. I. Theory Phys. Rev. B 7, 4491 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lax, M., Scher, H.: Renewal theory and AC conductivity in random structures. Phys. Rev. Lett. 39, 781 (1977)

    Article  ADS  Google Scholar 

  8. Prato, D.P., Pury, P.A.: The waiting time problem. Physica A 157, 1261 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Godreche, C., Luck, J.M.: Statistics of the occupation time of renewal process. J. Stat. Phys. 104, 489 (2001)

    Article  Google Scholar 

  10. Caceres, M.O.: Anomalous hydrodynamical dispersion and the transport with multiple families of paths in porous media. Phys. Rev. E 69, 036302 (2004)

    Article  ADS  Google Scholar 

  11. Caceres, M.O., Insua, G.L.: Passage time of asymmetric anomalous walks with multiple paths. J. Phys. A: Math. Gen. 38, 3711 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Budini, A.A., Grigolini, P.: Non-Markovian nonstationary completely positive open-quantum-system dynamics. Phys. Rev. A 80, 022103 (2009)

    Article  ADS  Google Scholar 

  13. Garcia, O.E.: Stochastic modeling of intermittent scrape-off Layer plasma fluctuations. Phys. Rev. Lett. 108, 265001 (2012)

    Article  ADS  Google Scholar 

  14. Budini, A.A.: Non-poissonian intermittent fluorescence from complex structured environments. Phys. Rev. A 73, 061802R (2006). 978-3-319-51552-6. Springer (2017)

  15. van Kampen, N.G.: Stochastic differential equations. Phys. Rep. 24 C, 171 (1976)

    Article  ADS  Google Scholar 

  16. Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Springer, Berlin (1984). and references therein

    MATH  Google Scholar 

  17. Cáceres, M.O.: Non-equilibrium Statistical Physics with Application to Disordered Systems. Springer, Berlin (2017)

    Book  Google Scholar 

  18. Carbone, V., et al.: Intermittency and turbulence in a magnetically confined fusion plasma. Phys. Rev. E 62, R49 (2001)

    Article  ADS  Google Scholar 

  19. García, O.E., Horacek, J., Pitts, R.A.: Intermittent fluctuations in the TCV scrape-off layer. Nucl. Fusion 55, 062002 (2015)

    Article  ADS  Google Scholar 

  20. Terwiel, R.H.: Projection operator method applied to stochastic linear differential equations. Physica A 74, 248 (1974)

    MathSciNet  Google Scholar 

  21. Bourret, R.C., Frisch, U., Pouquet, A.: Brownian motion of harmonic oscillator with stochastic frequency. Physica A 65, 303 (1973)

    Google Scholar 

  22. Cáceres, M.O.: Computing a non-Maxwellian velocity distribution from first principles. Phys. Rev. E 67, 016102 (2003)

    Article  ADS  Google Scholar 

  23. Masoliver, J.: Second-order precesses driven by dichotomic noise. Phys. Rev. A 45, 706 (1992)

    Article  ADS  Google Scholar 

Download references

Funding

Funding was provided by CONICET (Grant No. PIP 112-201501-00216, CO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel O. Cáceres.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: 2-Times Moment for a Non-stationary Case

For a non-stationary renewal model, with \(\left\langle t\right\rangle =\infty \), even in the asymptotic limit (with \(\{t,t^{\prime }\}\rightarrow \infty \) and \(t-t^{\prime }<\infty \)) the 2-times moment \(\left\langle \xi \left( t\right) \xi \left( t^{\prime }\right) \right\rangle \) explicitly depends on both times t and \(t^{\prime }\)

$$\begin{aligned} \left\langle \xi \left( t\right) \xi \left( t^{\prime }\right) \right\rangle =\theta ^{2}\left( 1-2\mathcal {L}_{\omega }^{-1} \left[ \frac{\rho (\omega , t^{\prime }\rightarrow \infty )}{\omega \left( 1+\psi (\omega )\right) }, t-t^{\prime }\right] \right) . \end{aligned}$$
(A1)

In this asymptotic limit it makes no difference to use \(\rho \left( \Delta , t_{i}\rightarrow \infty \right) \) or \(\rho ^{0} \left( \Delta ,t_{i}\rightarrow \infty \right) \). To proceed to make an explicit calculation we need to give a particular model of (long-tail) waiting-time function. In this case from (9) and using Tauberian’s theorem we get the asymptotic behavior \(\rho (\Delta ,t_{i})\simeq \phi \left( \Delta \right) f\left( t_{i}\right) \), for \(t_{i}\rightarrow \infty \). Thus, the expression (A1) coincides with the one given for broad waiting-time distributions [9].

Appendix B: Correspondence Between \(P\left( \xi (t_{1})\left| \xi (0)\right. \right) \) and \(P\left( \sigma (t_{1})\left| \sigma (0)\right. \right) \)

1.1 1. Time Correspondence

In order to demonstrate this correspondence we use the Cayley-Hamilton theorem (if \(\mathcal {P}\left( z\right) \) is the characteristic polynomial of the matrix \(\mathbf {A}\), then \(\mathcal {P}\left( \mathbf {A}\right) =0\)). Thus, we can rewrite the matrix \(e^{\mathbf {H}t}\) as a polynomial in a closed form. Due to the fact that \(\mathbf {H}\) has different eigenvalues \( \lambda _{j}\), see (35), we can find a similarity transformation matrix \(\mathbf {C}\) and its inverse \(\mathbf {C}^{-1}\) such that \(\mathbf {H}_{D} =\mathbf {C}^{-1}\mathbf {HC}\). Then \(e^{\mathbf {H}t}\) can be written in its diagonal form \(e^{\mathbf {H}_{D}t}\). Now using the characteristic polynomial of a matrix \(\mathbf {A} \in \mathcal {R}^{N\times N}\) we get:

$$\begin{aligned} \mathcal {P}\left( z\right) =\det \left| z\mathbf {I}-\mathbf {A} \right| =\sum _{n=0}^{N}z^{N-n}c_{n}, \end{aligned}$$
(B1)

where \(c_{n}\) are the algebra invariants of matrix \(\mathbf {A}\). Therefore, using Cayley-Hamilton theorem for matrix \(\mathbf {A}\equiv e^{\mathbf {H} _{D}t}\in \mathcal {R}_{e}^{4\times 4}\), we can write \(e^{\mathbf {H}t}\) as a polynomial. From (B1) we get \(-c_{3}e^{\mathbf {H}_{D}t} =c_{4}+\sum _{n=0}^{2}e^{\left( 4-n\right) \mathbf {H}_{D}t}c_{n}\). Now applying the similarity transformation we arrive to:

$$\begin{aligned} e^{\mathbf {H}t}=\frac{-1}{c_{3}}\left( c_{4}+\sum _{n=0}^{2} \mathbf {C}e^{\left( 4-n\right) \mathbf {H}_{D}t}\mathbf {C}^{-1}c_{n}\right) . \end{aligned}$$
(B2)

This expression can straightforwardly be handled to calculate the time-dependent marginal probability of the dichotomic process \(P\left( \xi (t_{1});\xi (t_{0})\right) \); that is,

$$\begin{aligned} P\left( \xi (t_{1});\xi (t_{0})\right) =\mathcal {M}\oplus \left\langle \sigma ^{\pm }\left| e^{\mathbf {H}\left( t_{1}-t_{0}\right) }\right| \sigma ^{\pm }\right\rangle P\left( \sigma ^{\pm }\left( t_{0}\right) \right) . \end{aligned}$$
(B3)

Using the explicit expression of the invariants \(c_{n}\) (of the matrix \(e^{\mathbf {H}_{D}t}\)), introducing the elements of the \(4\times 4\) matrix \( \mathbf {C}e^{\left( 4-n\right) \mathbf {H}_{D}t}\mathbf {C}^{-1}\) and using a stationary probability \(P\left( \sigma ^{\pm }\left( t_{0}\right) \right) \), we can check the Markovian (\(2\times 2\)) limit. That is, for example for \(a\rightarrow b,\forall p\in \left( 0,1\right) \) we get:

$$\begin{aligned} \begin{array}{rcl} c_{1}&{}= &{} -1-2e^{-bt}-e^{-2bt} \\ c_{2}&{}= &{} 2(e^{-bt}+e^{-2bt}+e^{-3bt}) \\ c_{3}&{}= &{} -e^{-2bt}-2e^{-3bt}-e^{-4bt} \\ c_{4}&{}= &{} e^{-4bt} \end{array}, \end{aligned}$$
(B4)

and for \(p=(1-q)\rightarrow 0\) and \(\forall b\) and \(a=0\) we get:

$$\begin{aligned} \begin{array}{rcl} c_{1}&{}= &{} -3-e^{-2bt} \\ c_{2}&{}= &{} 3+3e^{-2bt} \\ c_{3}&{}= &{} -1-3e^{-2bt} \\ c_{4}&{}= &{} e^{-2bt} \end{array}. \end{aligned}$$
(B5)

Introducing any result from (B4) or (B5), in (B2) and (B3) we get

$$\begin{aligned} P\left( \xi (t)\left| \xi (0)\right. \right) =\frac{1}{2}\left( \begin{array}{cc} 1+e^{-2bt} &{} 1-e^{-2bt} \\ 1-e^{-2bt} &{} 1+e^{-2bt} \end{array}\right) , \end{aligned}$$

which is the expected Markovian limit.

1.2 2. Laplace Correspondence

A general one-to-one correspondence is simpler to show when considering the conditional probabilities \(P\left( \xi (t)\left| \xi (0)\right. \right) \in \mathcal {R}_{e}^{2\times 2}\) and \(P\left( \sigma (t)\left| \sigma (0)\right. \right) \in \mathcal {R}_{e}^{4\times 4}\) in the Laplace representation.

For a stationary renewal process the probability to have n-events in the time interval \(\left[ 0,t\right] \) can be red from (19) or (20). Then, using (6) and Feller’s proposition, in the Laplace representation, we get:

$$\begin{aligned} \mathcal {P}_{n}\left( u\right) =\frac{1-\psi \left( u\right) }{u} \psi _{1}\left( u\right) \psi \left( u\right) ^{n-1},\ \forall n\ge 1. \end{aligned}$$
(B6)

Given an arbitrary discrete-time recurrence relation of the form:

$$\begin{aligned} \mathbf {W}_{n}=\mathbf {T}\cdot \mathbf {W}_{n-1},\ n=0,1,2,\ldots , \ \mathbf {W}_{0}=\mathbf {1}\text { (identity),} \end{aligned}$$
(B7)

where matrix \(\mathbf {W}\in \mathcal {R}_{e}^{2\times 2}\) and \(\mathbf {T}\) is a \(\left( 2\times 2\right) \) Markov transition matrix. The Green solution of (B7) is \(\mathbf {W}_{n}=\mathbf {T}^{n},\ \forall n\ge 0\). Then, its continuous-time representation can be written using a general renewal process as

$$\begin{aligned} \mathbf {W}\left( t\right) =\sum _{n=1}^{\infty }\mathcal {P}_{n} \left( t\right) \mathbf {T}^{n}+\left( 1-\int _{0}^{t}\psi _{1} \left( \tau \right) d\tau \right) \mathbf {W}_{0},\quad t\ge 0. \end{aligned}$$
(B8)

So in the Laplace representation we get

$$\begin{aligned} \mathbf {W}\left( u\right) =\frac{1-\psi \left( u\right) }{u}\psi _{1} \left( u\right) \left( 1-\psi \left( u\right) \mathbf {T}\right) ^{-1}\mathbf {T} +\frac{1-\psi _{1}\left( u\right) }{u}\mathbf {1}. \end{aligned}$$
(B9)

This formula can easily be applied to our intermittent dichotomic model adopting a symmetric Markov matrix \(\mathbf {T}\in \mathcal {R}_{e}^{2\times 2} \), and using \(\psi \left( t\right) \) and \(\psi _{1}\left( t\right) \). Then, we get an exact expression, in the Laplace representation, for the conditional probability of the intermittent dichotomic noise.

On the other hand the propagator of the 4-dimensional Markov process (29) is \(\mathbf {P}\left( u\right) =\left( u-\mathbf {H}\right) ^{-1}\in \mathcal {R}_{e}^{4\times 4}\), where \(\mathbf {H}\) is the Master Hamiltonian (30). Then, we can show, using symbolic algebraic computation that the following equality is maintain:

$$\begin{aligned} \mathbf {W}\left( u\right) =\mathcal {M}\oplus \left\langle \sigma \left| \left( u-\mathbf {H}\right) ^{-1}\right| \sigma \right\rangle P\left( \sigma \left( 0\right) \right) . \end{aligned}$$
(B10)

This result concludes our proof.

A particular form of the 4-dimensional initial condition \(P\left( \sigma \left( 0\right) \right) \) can be put in a one-to-one correspondence with the ordinary or ongoing renewal process associated to the intermittent waiting-time (12). Explicit calculations are shown Sect. 5.1.1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McHardy, I., Nizama, M., Budini, A.A. et al. Intermittent Waiting-Time Noises Through Embedding Processes. J Stat Phys 177, 608–625 (2019). https://doi.org/10.1007/s10955-019-02381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02381-6

Keywords

Navigation