Skip to main content
Log in

Anomalous Dynamics of Inertial Systems Driven by Colored Lévy Noise

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Dynamics of underdamped particles subjected to colored Lévy noise is investigated analytically. The probability density distribution of the Lévy particle in the harmonic potential is exactly obtained by solving the fractional Fokker–Planck equation, which is also a Lévy type one with width depends on both correlation time \(\tau _c\) and damping coefficient \(\gamma \) and converges to the distribution for the white-noise, overdamped case in the limit \(\tau _c\rightarrow 0\), \(\gamma \rightarrow \infty \). Moreover, we obtain an analytical expression of escape rate for the underdamped particle escaping from a metastable potential by using the reactive flux method. It is shown that the stationary escape rate exhibits nonmonotonic dependence on the Lévy index, while an increase of the noise correlation time leads to the monotonic decrease of escape rete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature (London) 453, 495 (2008)

    Article  ADS  Google Scholar 

  2. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphey, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature(London) 381, 413 (1996)

    Article  ADS  Google Scholar 

  3. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)

    Article  ADS  Google Scholar 

  4. Jespersen, S., Metzler, R., Fogedby, H.C.: Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736 (1999)

    Article  ADS  Google Scholar 

  5. Chechkin, A.V., Klafter, J., Gonchar, VYu., Metzler, R., Tanatarov, L.V.: Bifurcation, bimodality, and finite variance in confined Lévy flights. Phys. Rev. E 67, 010102(R) (2003)

    Article  ADS  Google Scholar 

  6. Chechkin, A.V., Gonchar, VYu., Klafter, J., Metzler, R., Tanatarov, L.V.: Lévy flights in a steep potential well. J. Stat. Phys. 115, 1505 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Chechkin, A.V., Sliusarenko, O.Y., Metzler, R., Klafter, J.: Barrier crossing driven by Lévy noise: universality and the role of noise intensity. Phys. Rev. E 75, 041101 (2007)

    Article  ADS  Google Scholar 

  8. Lü, Y., Bao, J.D.: Inertial Lévy flight. Phys. Rev. E 84, 051108 (2011)

    Article  ADS  Google Scholar 

  9. Bai, Z.W., Hu, M.: Escape rate of Lévy particles from truncated confined and unconfined potentials. Physica A 428, 332 (2015)

    Article  ADS  Google Scholar 

  10. Dybiec, B., Gudowska-Nowak, E., Sokolov, I.M.: Transport in a Lévy ratchet: group velocity and distribution spread. Phys. Rev. E 78, 011117 (2008)

    Article  ADS  Google Scholar 

  11. Castillo-Negrete, D., Gonchar, V.Y., Chechkin, A.V.: Fluctuation-driven directed transport in the presence of Lévy flights. Physica A 387, 6693 (2008)

    Article  ADS  Google Scholar 

  12. Pavlyukevich, I., Dybiec, B., Chechkin, A.V., Sokolov, I.M.: Lévy ratchet in a weak noise limit: theory and simulation. Eur. Phys. J. Spec. Topics 191, 223 (2010)

    Article  ADS  Google Scholar 

  13. Risau-Gusman, S., Ibáñez, S., Bouzat, S.: Directed transport induced by \(\alpha \)-stable Lévy noises in weakly asymmetric periodic potentials. Phys. Rev. E 87, 022105 (2013)

    Article  ADS  Google Scholar 

  14. Chen, C., Kang, Y.M.: Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise. Commun. Nonlinear Sci. Numer. Simul. 42, 379 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, R.N., Kang, Y.M.: Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise. Phys. Lett. A 382, 1656 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lü, Y., Bao, J.D.: Directed transport induced by colored Lévy noise: competition between long jumps and noise correlation. Phys. Lett. A 380, 2485 (2016)

    Article  ADS  Google Scholar 

  17. Bouzat, S.: Inertial effects, mass separation and rectification power in Lévy ratchets. Physica A 389, 3933 (2010)

    Article  ADS  Google Scholar 

  18. Bai, Z.W., Hu, M.: Escape of an inertial Lévy flight particle from a truncated quartic potential well. Physica A 479, 91 (2017)

    Article  ADS  Google Scholar 

  19. Lü, Y., Lu, H.: Inertial ratchet driven by colored Lévy noise: current inversion and mass separation. J. Stat. Mech. 2018(5), 053303 (2018)

    Article  Google Scholar 

  20. Srokowski, T.: Anomalous diffusion in systems driven by the stable Lévy noise with a finite noise relaxation time and inertia. Phys. Rev. E 85, 021118 (2012)

    Article  ADS  Google Scholar 

  21. Tannor, D.J., Kohen, D.: Derivation of Kramers’ formula for condensed phase reaction rates using the method of reactive flux. J. Chem. Phys. 100, 4932 (1994)

    Article  ADS  Google Scholar 

  22. Kohen, D., Tannor, D.J.: Phase space distribution function formulation of the method of reactive flux: Memory friction. J. Chem. Phys. 103, 6013 (1995)

    Article  ADS  Google Scholar 

  23. Wang, X.X., Bao, J.D.: Master equation approach to time-dependent escape rate over a periodically oscillating barrier. Phys. Rev. E 83, 011127 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Foundation for Theoretical Physics under Grant No. 11447186 and and the Doctoral Scientific Research Starting Foundation of Taiyuan University of Science and Technology (Grant No. 20122042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lü.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Solution of a, b and c

Appendix: Solution of a, b and c

Substituting Eq. (7) into Eq. (6) and introducing a new variable \(t'=t-s\), we get the relations

$$\begin{aligned} \begin{array}{ll} a(0)=0,~~b(0)=0,~~c(0)=\frac{1}{\tau _c},\\ \frac{\partial a(t')}{\partial t'}=b(t'),\\ \frac{\partial b(t')}{\partial t'}+\gamma b(t')+\omega ^2a(t')-\frac{c(t')}{m}=0,\\ \frac{\partial c(t')}{\partial t'}+\frac{c(t')}{\tau _c}=0. \end{array} \end{aligned}$$
(A1)

The Laplace transforms of \(a(t')\), \(b(t')\) and \(c(t')\) are given by

$$\begin{aligned} \begin{array}{ll} \hat{a}(p)=\frac{1}{m\tau _c\left( p^2+\gamma p+\omega ^2\right) (p+\frac{1}{\tau _c})},~\hat{b}(p)=\frac{p}{m\tau _c\left( p^2+\gamma p+\omega ^2\right) (p+\frac{1}{\tau _c})},~ c(p)=\frac{1}{\tau _c(p+\frac{1}{\tau _c})}. \end{array} \end{aligned}$$
(A2)

Based the above relations, we have

$$\begin{aligned} a(t')= & {} -\frac{(\lambda _2-\lambda _3)e^{\lambda _1t'}+(\lambda _3-\lambda _1)e^{\lambda _2t'} +(\lambda _1-\lambda _2)e^{\lambda _3t'}}{m\tau _c(\lambda _1-\lambda _2)(\lambda _2-\lambda _3)(\lambda _3-\lambda _1)},\nonumber \\ b(t')= & {} -\frac{(\lambda _2-\lambda _3)\lambda _1e^{\lambda _1t'}+(\lambda _3-\lambda _1)\lambda _2e^{\lambda _2t'} +(\lambda _1-\lambda _2)\lambda _3e^{\lambda _3t'}}{m\tau _c(\lambda _1-\lambda _2)(\lambda _2-\lambda _3)(\lambda _3-\lambda _1)},\nonumber \\ c(t')= & {} \frac{1}{\tau _c}e^{\lambda _3t'},~ \text {for}~ \lambda _1\ne \lambda _2\ne \lambda _3\ne \lambda _1; \end{aligned}$$
(A3)
$$\begin{aligned} a(t')= & {} \frac{(\lambda _1-\lambda _3)e^{\lambda _1t'}t'+e^{\lambda _3t'} -e^{\lambda _1t'}}{m\tau _c(\lambda _1-\lambda _3)^2}, \nonumber \\ b(t')= & {} \frac{(\lambda _1-\lambda _3)\lambda _1e^{\lambda _1t'}t'+\lambda _3(e^{\lambda _3t'} -e^{\lambda _1t'})}{m\tau _c(\lambda _1-\lambda _3)^2},\nonumber \\ c(t')= & {} \frac{1}{\tau _c}e^{\lambda _3t'},~ \text {for}~ \lambda _1=\lambda _2\ne \lambda _3; \end{aligned}$$
(A4)
$$\begin{aligned} a(t')= & {} \frac{t'^2}{2m\tau _c}e^{\lambda _1 t'}, \nonumber \\ b(t')= & {} \frac{t'}{m\tau _c}e^{\lambda _1 t'}+\frac{\lambda _1 t'^2}{2m\tau _c}e^{\lambda _1 t'},\nonumber \\ c(t')= & {} \frac{1}{\tau _c}e^{\lambda _3t'},~ \text {for}~ \lambda _1=\lambda _2=\lambda _3; \end{aligned}$$
(A5)

where \(\lambda _3=-\frac{1}{\tau _c}\), \(\lambda _{1,2}=-\frac{\gamma }{2}\pm \frac{\sqrt{\gamma ^2-4\omega ^2}}{2} \) are the eigenvalues of the equation \(\lambda _0^2+\gamma \lambda _0+\omega ^2=0\).

In the absence of inertial term, Eq. (A2) yields

$$\begin{aligned} \begin{array}{ll} \hat{a}(p)=\frac{1}{m\tau _c\gamma \left( p+\frac{\omega ^2}{\gamma }\right) \left( p+\frac{1}{\tau _c}\right) },~\hat{b}(p)=\frac{p}{m\tau _c\gamma \left( p+\frac{\omega ^2}{\gamma }\right) \left( p+\frac{1}{\tau _c}\right) },~ c(p)=\frac{1}{\tau _c\left( p+\frac{1}{\tau _c}\right) }. \end{array} \end{aligned}$$
(A6)

Then we recover the results for the overdamped particle in the harmonic potential subjected to the colored Lévy noise

$$\begin{aligned} a(t')= & {} \frac{(e^{-\omega ^2 t'/\gamma }-e^{\lambda _3t'})}{m\tau _c\gamma (-\omega ^2/\gamma -\lambda _3)},~ b(t')=\frac{\left( -\frac{\omega ^2}{\gamma } e^{-\omega ^2 t'/\gamma } -\lambda _3e^{\lambda _3t'}\right) }{m\tau _c\gamma (-\lambda /\gamma -\lambda _3)},\nonumber \\ ~c(t')= & {} \frac{e^{\lambda _3t'}}{\tau _c},~ \text {for}~\lambda _3\ne -\omega ^2/\gamma \nonumber \\ a(t')= & {} \frac{t'e^{\lambda _3 t'}}{m\tau _c\gamma }, ~b(t')=\frac{(\lambda _3t'+1)e^{\lambda _3t'}}{m\tau _c\gamma }, ~c(t')=\frac{e^{\lambda _3t'}}{\tau _c},~ \text {for}~\lambda _3=-\omega ^2/\gamma . \end{aligned}$$
(A7)

Besides, for the underdamped particle in the harmonic potential subjected to white Lévy noise \((\tau _c=0)\), Eq. (A2) take the form

$$\begin{aligned} \begin{array}{ll} \hat{a}(p)=\frac{1}{m\left( p^2+\gamma p+\omega ^2\right) },~\hat{b}(p)=\frac{p}{m\left( p^2+\gamma p+\omega ^2\right) },~ c(p)=1. \end{array} \end{aligned}$$
(A8)

Thus, we obtain

$$\begin{aligned} a(t')= & {} \frac{(e^{\lambda _1t'}-e^{\lambda _2t'})}{m(\lambda _1-\lambda _2)},~ b(t')=\frac{(\lambda _1e^{\lambda _1t'}-\lambda _2e^{\lambda _2t'})}{m(\lambda _1-\lambda _2)}, ~c(t')=\delta (t'),~ \text {for}~\lambda _1\ne \lambda _2 \nonumber \\ a(t')= & {} \frac{t'e^{\lambda _1t'}}{m}, ~b(t')=\frac{(\lambda _1t'+1)e^{\lambda _1t'}}{m}, ~c(t')=\delta (t'),~ \text {for}~\lambda _1=\lambda _2. \end{aligned}$$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Y., Lu, H. Anomalous Dynamics of Inertial Systems Driven by Colored Lévy Noise. J Stat Phys 176, 1046–1056 (2019). https://doi.org/10.1007/s10955-019-02331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02331-2

Keywords

Navigation