Skip to main content
Log in

Phases of Granular Matter

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An understanding of homogeneous nucleation of crystalline structure from a disordered medium such as a liquid remains an important unsolved problem in condensed matter physics. Guided by the results from a number of experiments on granular and colloidal systems in the past two decades, including in particular observations of homogeneous nucleation in colloidal and granular systems, we suggest an alternative to the statistical mechanics approach to static granular matter initiated by Edwards and Oakeshott in 1989.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Edwards, S., Oakeshott, R.: Theory of powders. Physica A (Amsterdam) 157, 1080–1090 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  2. Flory, P.: Statistical Mechanics of Chain Molecules. Hanser-Gardner, Cincinnati (1989)

    Google Scholar 

  3. de Gennes, P.G.: Soft matter. Rev. Mod. Phys. 64(3), 645–648 (1992)

    Article  ADS  Google Scholar 

  4. Doi, M., Edwards, S.M.: The Theory of Polymer Dynamics. International Series of Monographs on Physics, vol. 73. Oxford University Press, England (1986)

  5. Liu, A., Nagel, S.: Jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  Google Scholar 

  6. Baule, A., Morone, F., Herrmann, H., Makse, H.: Edwards statistical mechanics for jammed granular matter. Rev. Mod. Phys. 90(1), 015006 1–58 (2018)

  7. Barrat, A., Kurchan, J., Loreto, V., Sellitto, M.: Edwards’ measures for powders and glasses. Phys. Rev. Lett. 85, 5034–5037 (2000)

    Article  ADS  Google Scholar 

  8. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Glass and jamming transitions: from exact results to finite-dimensional descriptions. Annu. Rev. Condens. Matter Phys. 8, 265–288 (2017)

    Article  ADS  Google Scholar 

  9. Rietz, F., Radin, C., Swinney, H.L., Schroeter, M.: Nucleation in sheared granular matter. Phys. Rev. Lett. 120(5), 055701 (2018)

    Article  ADS  Google Scholar 

  10. Royall, C., Poon, W., Weeks, E.: In search of colloidal hard spheres. Soft Matter 9, 17–27 (2013)

    Article  ADS  Google Scholar 

  11. Scott, G.D.: Packing of equal spheres. Nature (London) 188, 908–909 (1960)

    Article  ADS  MATH  Google Scholar 

  12. Lagarias, J. (ed.): The Kepler Conjecture. Springer, New York (2011)

    MATH  Google Scholar 

  13. Bernal, J.D.: A geometrical approach to the structure of liquids. Nature (London) 183, 141–147 (1959)

    Article  ADS  Google Scholar 

  14. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. J. Phys. D 2, 863–866 (1969)

    Article  ADS  Google Scholar 

  15. Finney, J.L.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. A 319, 479–493 (1970)

    Article  ADS  Google Scholar 

  16. Berryman, J.G.: Random close packing of hard spheres and disks. Phys. Rev. A 27, 1053–1061 (1983)

    Article  ADS  Google Scholar 

  17. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71(6), 061302 (2005)

    Article  ADS  Google Scholar 

  18. Baranau, V., Tallarek, U.: Random-close packing limits for monodisperse and polydisperse hard spheres. Soft Matter 10, 3826–3841 (2014)

    Article  ADS  Google Scholar 

  19. Huerta, D.A., Sosa, V., Vargas, M.C., Ruiz-Suarez, J.C.: Archimedes’ principle in fluidized granular systems. Phys. Rev. E 72(3), 031307 (2005)

    Article  ADS  Google Scholar 

  20. Radin, C.: Random close packing of granular matter. J. Stat. Phys. 131(4), 567–573 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nicolas, M., Duru, P., Pouliquen, O.: Compaction of a granular material under cyclic shear. Eur. Phys. J. E 3, 309–314 (2000)

    Article  Google Scholar 

  22. Aristoff, D., Radin, C.: Random close packing in a granular model. J. Math. Phys. 51(11), 113302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Jin, Y., Makse, H.A.: A first-order phase transition defines the random close packing of hard spheres. Physica A (Amsterdam) 389, 5362–5379 (2010)

    Article  ADS  Google Scholar 

  24. Nichol, K., Zanin, A., Bastien, R., Wandersman, E., van Hecke, M.: Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104(7), 078302 (2010)

    Article  ADS  Google Scholar 

  25. Poon, W., Weeks, E., Royall, C.: On measuring colloidal volume fractions. Soft Matter 8, 21–30 (2012)

    Article  ADS  Google Scholar 

  26. Rutgers, M.A., Dunsmuir, J.H., Xue, J.-Z., Russel, W.B., Chaikin, P.M.: Measurement of the hard-sphere equation of state using screened charged polystyrene colloids. Phys. Rev. B 53(9), 5043–5046 (1996)

    Article  ADS  Google Scholar 

  27. Loewen, H.: Fun with hard spheres. In: Mecke, K.R., Stoyen, D. (eds.) Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation. Lecture Notes in Physics, vol. 554, pp. 295–331. Springer, Berlin (2000)

    Chapter  Google Scholar 

  28. Burdzy, K., Chen, Z.-Q., Pal, S.: Archimedes’ Principle for Brownian Liquid. Ann. Appl. Probab. 21, 20532074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Anderson, P.W.: Basic Notions of Condensed Matter Physics. Benjamin/Cummings, Menlo Park (1984)

    Google Scholar 

  30. Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philos. Mag. Ser. 5(20), 469–481 (1885)

    Article  Google Scholar 

  31. Bizon, C., Shattuck, M.D., Swift, J.B., McCormick, W.D., Swinney, H.L.: Patterns in 3D vertically oscillated granular layers: simulation and experiment. Phys. Rev. Lett. 80(1), 57–60 (1998)

    Article  ADS  Google Scholar 

  32. Moon, S., Swift, J.B., Swinney, H.L.: Role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69(3), 031301 (2004)

    Article  ADS  Google Scholar 

  33. Bougie, J., Kreft, J., Swift, J.B., Swinney, H.L.: Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations. Phys. Rev. E 71(2), 021301 (2005)

    Article  ADS  Google Scholar 

  34. Francois, N., Saadatfar, M., Cruikshank, R., Sheppard, A.: Geometrical frustration in amorphous and partially crystallized packings of spheres. Phys. Rev. Lett. 111, 148001 (2013)

    Article  ADS  Google Scholar 

  35. Hanifpour, M., Francois, N., Robins, V., Kingston, A., Vaez Allaei, S.M., Saadatfar, M.: Structural and mechanical features of the order–disorder transition in experimental hard-sphere packings. Phys. Rev. E 91, 06202 (2015)

    Article  Google Scholar 

  36. Saadatfar, M., Takeuchi, H., Robins, V., Francois, N.: Pore configuration landscape of granular crystallization. Nat. Commun. 8, 1–11 (2017). https://doi.org/10.1038/ncomms15082

    Article  Google Scholar 

  37. Mueggenburg, N.W.: Behavior of granular materials under cyclic shear. Phys. Rev. E 71, 031301 (2005)

    Article  ADS  Google Scholar 

  38. Panaitescu, A., Reddy, K.A., Kudrolli, A.: Nucleation and crystal growth in sheared granular sphere packings. Phys. Rev. Lett. 108, 108001 (2012)

    Article  ADS  Google Scholar 

  39. Tsai, J.C., Voth, G.A., Gollub, J.P.: Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91, 064301 (2003)

    Article  ADS  Google Scholar 

  40. Daniels, K.E., Behringer, R.P.: Characterization of a freezing/melting transition in a vibrated and sheared granular medium. J. Stat. Mech. 2006, P07018 (2006)

    Article  Google Scholar 

  41. Schroeter, M., Goldman, D.I., Swinney, H.L.: Stationary state volume fluctuations in a granular medium. Phys. Rev. E 71, 030301(R) (2005)

    Article  ADS  Google Scholar 

  42. Gasser, U., Weeks, E.R., Schofield, A., Pusey, P.N., Weitz, D.A.: Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001)

    Article  ADS  Google Scholar 

  43. Debenedetti, P.G.: Metastable Liquids. Princeton University Press, Princeton (1996)

    Google Scholar 

  44. Nowak, E., Knight, J., Ben-Naim, E., Jaeger, H., Nagel, S.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57(2), 1971–1982 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (Harry Swinney) acknowledges with pleasure the influence of Pierre Hohenberg, who is being remembered by the publication of this special memorial issue of the Journal of Statistical Physics. In the period 1971–1973 Pierre Hohenberg was a regular visitor in the physics department at New York University, where Harry was an assistant professor who was conducting light scattering studies of critical phenomena in fluids. Regular discussions with Pierre were particularly helpful in interpreting data for the decay rate of order parameter fluctuations near critical points. In the following decades there were many lively discussions where Pierre guided Harry in the interpretation of laboratory data in terms of statistical theory.

The authors of this paper acknowledge many lively and productive discussions with Matthias Schroeter, who initiated together with Frank Rietz and the authors the experiment at the University of Texas that motivated the present manuscript. The results presented in Rietz et al. [6] were subsequently obtained at the Max Planck Institute for Dynamics and Self-Organization in Goettingen, where Schroeter and Rietz developed a much improved apparatus. The authors also thank Eric Weeks for helpful discussions about the experiments on nucleation in colloidal systems. Radin acknowledges the support of NSF Grant DMS-1509088, and Swinney acknowledges the support of the Sid W. Richardson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Radin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radin, C., Swinney, H.L. Phases of Granular Matter. J Stat Phys 175, 542–553 (2019). https://doi.org/10.1007/s10955-018-2144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2144-4

Keywords

Navigation