Skip to main content
Log in

Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The present contribution investigates the dynamics generated by the two-dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady inhomogeneous background of opposite charges. We provide global in time estimates that are uniform with respect to initial data taken in a bounded set of a weighted \(L^2\) space, and where dependencies on the mean-free path \(\tau \) and the Debye length \(\delta \) are made explicit. In our analysis the mean free path covers the full range of possible values: from the regime of evanescent collisions \(\tau \rightarrow \infty \) to the strongly collisional regime \(\tau \rightarrow 0\). As a counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is used to close our nonlinear estimates. Accordingly we pay a special attention to relax as much as possible the \(\tau \)-dependent constraint on \(\delta \) ensuring exponential decay with explicit \(\tau \)-dependent rates towards the stationary solution. In the strongly collisional limit \(\tau \rightarrow 0\), we also examine all possible asymptotic regimes selected by a choice of observation time scale. Here also, our emphasis is on strong convergence, uniformity with respect to time and to initial data in bounded sets of a \(L^2\) space. Our proofs rely on a detailed study of the nonlinear elliptic equation defining stationary solutions and a careful tracking and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In contrast we use the term for any limit corresponding to sending the diffusive parameter to infinity.

References

  1. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, vol. 348. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  2. Bedrossian, J.: Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation. arXiv preprint arXiv:1704.00425 (2017)

  3. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: below threshold case. arXiv preprint arXiv:1506.03720 (2015)

  4. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold case. arXiv preprint arXiv:1506.03721 (2015)

  5. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 185(2), 541–608 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bedrossian, J., Masmoudi, N.: Asymptotic stability for the Couette flow in the 2D Euler equations. Appl. Math. Res. Express. AMRX 2014(1), 157–175 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2(1), 1–71 (2016)

  9. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow. Arch. Ration. Mech. Anal. 219(3), 1087–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bedrossian, J., Vicol, V., Wang, F.: The Sobolev Stability Threshold for 2D Shear Flows Near Couette. arXiv preprint arXiv:1604.01831 (2016)

  11. Bouchut, F.: Global weak solution of the Vlasov-Poisson system for small electrons mass. Commun. Partial Differ. Equ. 16(8–9), 1337–1365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouchut, F., Dolbeault, J.: On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differ. Integral Equ. 8(3), 487–514 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Briant, M.: From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: a quantitative error estimate. J. Differ. Equ. 259(11), 6072–6141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Dolbeault, J., Markowich, P.A., Schmeiser, C.: On Maxwellian equilibria of insulated semiconductors. Interfaces Free Bound. 2(3), 331–339 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carpio, A.: Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation. Math. Methods Appl. Sci. 21(11), 985–1014 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carrillo, J.A., Soler, J.: On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in \(L^p\) spaces. Math. Methods Appl. Sci. 18(10), 825–839 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Carrillo, J.A., Soler, J., Vázquez, J.L.: Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system. J. Funct. Anal. 141(1), 99–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Modern Phys. 15(1), 1 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Degond, P.: Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in \(1\) and \(2\) space dimensions. Ann. Sci. École Norm. Sup. 19(4), 519–542 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Moor, S., Rodrigues, L.M., Vovelle, J.: Invariant measures for a stochastic Fokker-Planck equation. Kinet. Relat. Models

  21. Dolbeault, J.: Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system. Math. Models Methods Appl. Sci. 1(2), 183–208 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolbeault, J.: Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. 78(2), 121–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dressler, K.: Steady states in plasma physics–the Vlasov-Fokker-Planck equation. Math. Methods Appl. Sci. 12(6), 471–487 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Duan, R.: Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlinearity 24(8), 2165–2189 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Duan, R., Yang, T.: Stability of the one-species Vlasov-Poisson-Boltzmann system. SIAM J. Math. Anal. 41(6), 2353–2387 (2009/10)

  27. Duan, R., Yang, T., Zhu, C.: Existence of stationary solutions to the Vlasov-Poisson-Boltzmann system. J. Math. Anal. Appl. 327(1), 425–434 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. El Ghani, N., Masmoudi, N.: Diffusion limit of the Vlasov-Poisson-Fokker-Planck system. Commun. Math. Sci. 8(2), 463–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Glassey, R., Schaeffer, J., Zheng, Y.: Steady states of the Vlasov-Poisson-Fokker-Planck system. J. Math. Anal. Appl. 202(3), 1058–1075 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gogny, D., Lions, P.-L.: Sur les états d’équilibre pour les densités électroniques dans les plasmas. RAIRO Modél. Math. Anal. Numér. 23(1), 137–153 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goudon, T.: Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: analysis of the two-dimensional case. Math. Models Methods Appl. Sci. 15(5), 737–752 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Goudon, T., Nieto, J., Poupaud, F., Soler, J.: Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system. J. Differ. Equ. 213(2), 418–442 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    Google Scholar 

  34. Guo, Y., Strauss, W.A.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire 12(3), 339–352 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ha, S.-Y., Noh, S.E.: Remarks on the stability of the frictionless Vlasov-Poisson-Fokker-Planck system. J. Math. Phys. 48(7), 073303, 13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Han-Kwan, D., Hauray, M.: Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation. Commun. Math. Phys. 334(2), 1101–1152 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Han-Kwan, D., Rousset, F.: Quasineutral limit for Vlasov-Poisson with Penrose stable data. Ann. Sci. Éc. Norm. Supér. (4) 49(6), 1445–1495 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral theory for Fokker-Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862. Springer, Berlin (2005)

  39. Hérau, F.: Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244(1), 95–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential. J. Funct. Anal. 271(5), 1301–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Herda, M.: On massless electron limit for a multispecies kinetic system with external magnetic field. J. Differ. Equ. 260(11), 7861–7891 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Herda, M., Rodrigues, L. M.: Anisotropic boltzmann-gibbs dynamics of strongly magnetized vlasov-fokker-planck equations. arXiv preprint arXiv:1610.05138 (2016)

  44. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hwang, H.J., Jang, J.: On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin. Dyn. Syst. Ser. B 18(3), 681–691 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jin, S., Zhu, Y.: Hypocoercivity and uniform regularity for the vlasov-poisson-fokker-planck system with uncertainty and multiple scales. arXiv preprint arXiv:1704.00208v1 (2017)

  47. Kagei, Y.: Invariant manifolds and long-time asymptotics for the Vlasov-Poisson-Fokker-Planck equation. SIAM J. Math. Anal. 33(2), 489–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kohn, J.J.: Pseudodifferential Operator with Applications. Lectures on Degenerate Elliptic Problems (Bressanone, 1977), pp. 89–151. Liguori, Naples (1978)

  49. Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Neunzert, H., Pulvirenti, M., Triolo, L.: On the Vlasov-Fokker-Planck equation. Math. Methods Appl. Sci. 6(4), 527–538 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Nieto, J., Poupaud, F., Soler, J.: High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Ration. Mech. Anal. 158(1), 29–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ono, K.: Global existence of regular solutions for the Vlasov-Poisson-Fokker-Planck system. J. Math. Anal. Appl. 263(2), 626–636 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ono, K., Strauss, W.A.: Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete Contin. Dyn. Syst. 6(4), 751–772 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Penrose, O.: Electrostatic instabilities of a uniform non-maxwellian plasma. Phys. Fluids 3(2), 258–265 (1960)

    Article  ADS  MATH  Google Scholar 

  56. Poupaud, F., Soler, J.: Parabolic limit and stability of the Vlasov-Fokker-Planck system. Math. Models Methods Appl. Sci. 10(7), 1027–1045 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, NJ (1970)

  58. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton, NJ (1971)

  59. Tristani, I.: Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime. arXiv preprint arXiv:1603.07219 (2016)

  60. Victory Jr., H.D., O’Dwyer, B.P.: On classical solutions of Vlasov-Poisson Fokker-Planck systems. Indiana Univ. Math. J. 39(1), 105–156 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  61. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950):iv+141 (2009)

  62. Wu, H., Lin, T.-C., Liu, C.: Diffusion limit of kinetic equations for multiple species charged particles. Arch. Ration. Mech. Anal. 215(2), 419–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of L. Miguel Rodrigues was partially supported by the ANR Project BoND ANR-13-BS01-0009-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Herda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herda, M., Rodrigues, L.M. Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit. J Stat Phys 170, 895–931 (2018). https://doi.org/10.1007/s10955-018-1963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1963-7

Keywords

Mathematics Subject Classification

Navigation