Skip to main content
Log in

On a Finite Range Decomposition of the Resolvent of a Fractional Power of the Laplacian II. The Torus

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In previous papers, Mitter (J Stat Phys 163:1235–1246, 2016; Erratum: J Stat Phys 166:453–455, 2017; On a finite range decomposition of the resolvent of a fractional power of the Laplacian, http://arxiv.org/abs/1512.02877), we proved the existence as well as regularity of a finite range decomposition for the resolvent \(G_{\alpha } (x-y,m^2) = ((-\Delta )^{\alpha \over 2} + m^{2})^{-1} (x-y) \), for \(0<\alpha <2\) and all real m, in the lattice \({{\mathbb Z}}^{d}\) for dimension \(d\ge 2\). In this paper, which is a continuation of the previous one, we extend those results by proving the existence as well as regularity of a finite range decomposition for the same resolvent but now on the lattice torus \({{\mathbb Z}}^{d}/L^{N+1}{{\mathbb Z}}^{d} \) for \(d\ge 2\) provided \(m\ne 0\) and \(0<\alpha <2\). We also prove differentiability and uniform continuity properties with respect to the resolvent parameter \(m^{2}\). Here L is any odd positive integer and \(N\ge 2\) is any positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian. J. Stat. Phys. 163, 1235–1246 (2016). Erratum: J. Stat. Phys. 166, 453–455 (2017)

  2. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian. arXiv:1512.02877

  3. Adams, S., Kotecký, R., Muller, S.: Finite range decomposition for families of gardient Gaussian measures. J. Funct. Anal. 264, 169–206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brydges, D., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. 159, 492–529 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bauerschmidt, Roland: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Slade, G.: Critical exponents for long range \(O(n)\) models below the upper critical dimension. arXiv:1611.06169

  8. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, 2nd Printing. Princeton University Press, Princeton (1975)

  9. Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43, 2nd Printing. Cambridge University Press, Cambridge (2001)

Download references

Acknowledgements

I wish to thank David Brydges for many helpful conversations and for setting me right on Poisson summation for a discrete torus. I also thank the diligent reviewers for their remarks, questions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Mitter.

Appendix

Appendix

In this Appendix we prove the statements in the first paragraph of Remark 4. By definition the fluctuation covariances on the coarser scale \(L'= L^{r}\) with \(L\ge 2\) fixed and r a large positive integer is given by (1.17):

$$\begin{aligned} {\tilde{\Gamma }}'_{j,\alpha } (\cdot ,m^{2})= \sum _{l=0}^{r-1} {\tilde{\Gamma }}_{l+jr,\alpha } (\cdot , m^{2}). \end{aligned}$$
(3.20)

Therefore we get

$$\begin{aligned} \Big \Vert {\partial \over \partial m^{2}} \partial _{ {{\mathbb Z}}^{d} }^{p} {\tilde{\Gamma }}'_{j,\alpha }(\cdot , m^{2}) \Big \Vert _{L^{\infty } ({{\mathbb Z}}^{d})}\le & {} \sum _{l=0}^{r-1} \Big \Vert {\partial \over \partial m^{2}} \partial _{ {{\mathbb Z}}^{d} }^{p} {\tilde{\Gamma }}_{l+jr,\alpha } (\cdot , m^{2}) \Big \Vert _{L^{\infty } ({{\mathbb Z}}^{d})} \\\le & {} c_{L, \alpha , p} (m^{2})^{-2(1-{1\over \alpha })} \sum _{l=0}^{r-1} L^{-p(l+jr)} L^{-(l+jr)(d-2)} \nonumber \\\le & {} c_{L, \alpha , p} (m^{2})^{-2(1-{1\over \alpha })} (L')^{-pj} (L')^{(d-2)j} \sum _{l=0}^{\infty } L^{-(p +(d-2))l}. \end{aligned}$$

For \(d\ge 3\), \(\forall p \ge 0\) and \(d=2\), \(\forall p \ge 1\) we can bound the sum on the right hand side by

$$\begin{aligned} \sum _{l=0}^{\infty } L^{-l} = \Big (1-{1\over L}\Big )^{-1} \end{aligned}$$

and hence

$$\begin{aligned} \Big \Vert {\partial \over \partial m^{2}} \partial _{ {{\mathbb Z}}^{d} }^{p} {\tilde{\Gamma }}'_{j,\alpha }(\cdot , m^{2}) \Big \Vert _{L^{\infty } ({{\mathbb Z}}^{d})} \le c'_{L, \alpha , p} (m^{2})^{-2(1-{1\over \alpha })} (L')^{-pj} (L')^{(d-2)j} . \end{aligned}$$

which is (1.20) with a new constant independent of \(L'\) as claimed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitter, P.K. On a Finite Range Decomposition of the Resolvent of a Fractional Power of the Laplacian II. The Torus. J Stat Phys 168, 986–999 (2017). https://doi.org/10.1007/s10955-017-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1828-5

Keywords

Navigation