Skip to main content
Log in

Ellipses Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We define a continuum percolation model that provides a collection of random ellipses on the plane and study the connectivity behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appears implicitly in the Poisson cylinder model of Tykesson and Windisch. The ellipses model has a parameter \(\alpha > 0\) associated with the tail decay of the major axis distribution; we only consider distributions \(\rho \) satisfying \(\rho [r, \infty ) \asymp r^{-\alpha }\). We prove that this model presents a double phase transition in \(\alpha \). For \(\alpha \in (0,1]\) the plane is completely covered by the ellipses, almost surely. For \(\alpha \in (1,2)\) the vacant set is not empty but does not percolate for any positive density of ellipses, while the covered set always percolates. For \(\alpha \in (2, \infty )\) the vacant set percolates for small densities of ellipses and the covered set percolates for large densities. Moreover, we prove for the critical parameter \(\alpha = 2\) that there is a non-degenerate interval of densities for which the probability of crossing boxes of a fixed proportion is bounded away from zero and one. In this interval neither the covered set nor the vacant set percolate, a behavior that is similar to critical independent percolation on \(\mathbb {Z}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahlberg, D., Tassion, V, Teixeira, A.: Sharpness of the phase transition for continuum percolation in \({\mathbb{R}}^{2}\) (2016). arXiv:1605.05926

  2. Berger, M.: Geometry II. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Bollobas, N., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Chayes, J.T., Chayes, L., Durrett, R.: Connectivity properties of mandelbrot’s percolation process. Probab. Theory Relat. Fields 77(3), 307–324 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gouéré, J.B.: Subcritical regimes in the poisson boolean model of continuum percolation. Ann. Probab. 1209–1220 (2008)

  6. Grimmett, G.R.: Percolation. Springer, Berlin (2010)

    MATH  Google Scholar 

  7. Hall, P.: On continuum percolation. Ann. Probab. 1250–1266 (1985)

  8. Hilário, M.R.: Coordinate percolation on Z3. PhD thesis, IMPA (2011)

  9. Janson, S.: Bounds on the distributions of extremal values of a scanning process. Stoch. Process. Appl. 18(2), 313–328 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kahane, J.P.: Random coverings and multiplicative processes. In: Fractal Geometry and Stochastics II, pp. 125–146. Springer, Berlin (2000)

  11. Klamkin, M.S.: Elementary approximations to the area of n-dimensional ellipsoids. Am. Math. Mon. 78(3), 280–283 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meester, R., Roy, R.: Continuum Percolation. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  14. Menshikov, M.V., Sidorenko, A.F.: Coincidence of critical points for poisson percolation models. Theory Probab. Appl. 32, 603–606 (1987)

    MathSciNet  Google Scholar 

  15. Menshikov, M.V., Yu Popov, S., Vachkovskaia, M.: On the connectivity properties of the complementary set in fractal percolation models. Probab. Theory Relat. Fields 119(2), 176–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Menshikov, M.V., Yu Popov, S., Vachkovskaia, M.: On a multiscale continuous percolation model with unbounded defects. Bull. Braz. Math. Soc. 34(3), 417–435 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Popov, S.Y., Vachkovskaia, M.: A note on percolation of poisson sticks. Br. J. Probab. Stat. 59–67 (2002)

  18. Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. Roy, R.: Percolation of poisson sticks on the plane. Probab. Theory Relat. Fields 89(4), 503–517 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrenk, K.J., Hilário, M.R., Sidoravicius, V., Araújo, N.A.M., Herrmann, H.J., Thielmann, M., Teixeira, A.: Critical fragmentation properties of random drilling: how many holes need to be drilled to collapse a wooden cube? Phys. Rev. Lett. 116(5), 055701 (2016)

    Article  ADS  Google Scholar 

  21. Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. 2039–2087 (2010)

  22. Tykesson, J, Windisch, D.: Percolation in the vacant set of Poisson cylinders. Probab. Theory Relat. Fields 154(1), 165–191 (2010). arXiv:1010.5338v2

  23. Ungaretti, D.: On planar continuum percolation models: heavy tails and scale-invariance. PhD thesis, IMPA (to appear)

  24. Zuev, S.A., Sidorenko, A.F.: Continuous models of percolation theory. I. Theor. Math. Phys. 62(1), 51–58 (1985)

    Article  MathSciNet  Google Scholar 

  25. Zuev, S.A., Sidorenko, A.F.: Continuous models of percolation theory. II. Theor. Math. Phys. 62(2), 171–177 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Caio Alves and Serguei Popov for insights on how to find the major axis distribution for the ellipses model derived from Poisson cylinder model. Also, we thank an unknown referee for simplifying our argument that \(\mathcal {E}\) does not percolate for \(\alpha = 2\). Finally, we thank Leandro Cruz for Fig. 1. This work had financial support from CNPq Grants 306348/2012-8 and 478577/2012-5, FAPERJ by Grants 202.231/2015 and 200.195/2015 and also from Capes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ungaretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, A., Ungaretti, D. Ellipses Percolation. J Stat Phys 168, 369–393 (2017). https://doi.org/10.1007/s10955-017-1795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1795-x

Keywords

Mathematics Subject Classification

Navigation