Skip to main content
Log in

Renormalization of Generalized KPZ Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use Renormalization Group to prove local well posedness for a generalized KPZ equation introduced by H. Spohn in the context of stochastic hydrodynamics. The equation requires the addition of counter terms diverging with a cutoff \(\epsilon \) as \(\epsilon ^{-1}\) and \(\log \epsilon ^{-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Catellier, R., Chouk, K.: Paracontrolled distributions and the 3-dimensional stochastic quantization equation. arXiv:1310.6869 (2013)

  3. Gonçalves, P., Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi. 3 (2015)

  5. Kupiainen, A.: Renormalization group and Stochastic PDEs. Ann. Henri Poincaré. 17(3), 497–535 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bricmont, J., Kupiainen, A., Lin, G.: Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun. Pure Appl. Math. 47, 893–922 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bricmont, J., Gawedzki, K., Kupiainen, A.: KAM theorem and quantum field theory. Commun. Math. Phys. 201(3), 699–727 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chae, S.B.: Holomorphy and Calculus in Normed Spaces. Marcel Decker, New York (1985)

    MATH  Google Scholar 

  11. Vladimir, I.: Bogachev: Gaussian Measures. Mathematical Surveys and Monographs. American Mathematical Society, Rhode Island (1998)

    Google Scholar 

  12. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications (New York), 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Lukkarinen, J., Marcozzi, M.: Wick polynomials and time-evolution of cumulants. J. Math. Phys. 57(8) (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Kupiainen.

Additional information

Supported by Academy of Finland.

Appendices

Appendix A: Proof of Lemma 4

From (37) one has

$$\begin{aligned} {\mathbb E}(\vartheta ^{(N)}_n(t,x),M^{(\alpha )}\vartheta ^{(N)}_n(t,x)) = \bigg (\sum _{\beta =1}^3 M^{(\alpha )}_{\beta \beta } \bigg ) {\mathfrak C}^{(N)}_n(0,0). \end{aligned}$$

Let us split \(\mathfrak {C}^{(N)}_n(0,0) \) by isolating the term corresponding to \( i=0\) in (35):

$$\begin{aligned} \mathfrak {C}^{(N)}_n(0,0)&= \frac{1}{2^{7/2} \sqrt{\pi }}\int _0^{\infty } \frac{\chi (s)^2 - \chi '(L^{2(N-n)} s)^2}{s^{3/2}}\,ds + R. \end{aligned}$$
(138)

where to stress the cutoff dependence we wrote this with the lower cutoff \(\chi '\).

The remainder is easily bounded by

$$\begin{aligned} R \le C e^{-cL^{2n}} \end{aligned}$$

and its change with cutoff by

$$\begin{aligned} |R-R' |&\le C e^{-cL^{2N}}\Vert \chi - \chi '\Vert _{\infty }. \end{aligned}$$

For the main term in (138) we define

$$\begin{aligned} \rho _\chi =\int _0^{\infty } \frac{1 - \chi ( s)^2}{s^{3/2}}\,ds . \end{aligned}$$

Then

$$\begin{aligned}&\int _0^{\infty } \frac{\chi (s)^2 - \chi '(L^{2(N-n)} s)^2}{ s^{3/2}}\,ds =L^{N-n}\rho _{\chi '}-\rho _\chi . \end{aligned}$$

Setting \(\delta _n^{(N)}=\sum _{\beta =1}^3 M^{(\alpha )}_{\beta \beta }(R-\rho _\chi )\) the claim follows. \(\square \)

Appendix B: Proof of Lemma 14

  1. (a)

    We have:

    $$\begin{aligned} {\mathfrak C}'_n(t, x)=-\Delta \int _0^{\infty }H_n(t+2s,x)\chi _{N-n}(t+s)\chi '_{N-n}(s)ds \end{aligned}$$
    (139)

    where \(\chi '_{N-n}(t)=\chi (t)-\chi (L^{2(N-n)}t)\). Therefore, since \(\chi _{N-n}(t+s)\chi '_{N-n}(s) \le \mathbf {1}_{[0,2]}(s)\mathbf {1}_{[0,2]}(t)\), one has

    $$\begin{aligned} | {\mathfrak C}'_n(t, x)| \le C \mathbf {1}_{[0,2]}(t) \sum _{j \in {\mathbb Z}} \ell (t,x+jL^n) \end{aligned}$$
    (140)

    where

    $$\begin{aligned} \ell (t,x+jL^n)&\le C \int _0^2 ds (t+2s)^{-\frac{3}{2}} e^{-\frac{x^2}{4(t+2s)}}[1 + x^2 (t + 2s)^{-1}] \nonumber \\&\le C e^{-cx^2}(x^2+t)^{-{_1\over ^2}}[1 + x^2(x^2+t)^{-1}]\mathbf {1}_{[0,2]}(t)\nonumber \\&\quad + e^{-cx^2/t}t^{-\frac{3}{2}}[1+x^2 t^{-1}]\mathbf {1}_{[2,\infty )}(t). \end{aligned}$$
    (141)

    Combining (140) with (141) one gets

    $$\begin{aligned} {\mathcal C}_n(\tau ,x)\le C e^{-cx^2}(x^2+t)^{-{_1\over ^2}}[1 + x^2(x^2+t)^{-1}]\mathbf {1}_{[0,2]}(t) \in L^p({\mathbb R}\times {\mathbb T}_n) \end{aligned}$$
    (142)

    for \(p<3\). To show (114), note that

    $$\begin{aligned} \chi _{N-n}( t+s)|\chi _{\epsilon }(s)-\chi '_{N-n}(s)|\le \mathbf {1}_{[\epsilon ^2,2\epsilon ^2]}(s) \mathbf {1}_{[0,2]}(t) \Vert \chi -\chi '\Vert _\infty \end{aligned}$$

    where \( \epsilon = L^{-(N-n)}\). Hence

    $$\begin{aligned} \delta {\mathcal C}_n(t,x)\le C \sum _{j \in {\mathbb Z}}\ell _{N-n}(t,x + jL^n)\mathbf {1}_{[0,2]}(t)\Vert \chi -\chi '\Vert _\infty \end{aligned}$$
    (143)

    where

    $$\begin{aligned} \ell _{M}(t,x):=\int _0^{2L^{-2M}} (t+2s)^{-\frac{3}{2}} e^{-\frac{x^2}{4(t+2s)}}[1 + x^2 (t + 2s)^{-1}]ds=L^{M} \ell _{0}(L^{2M}t,L^{M}x). \end{aligned}$$
    (144)

    Hence using (141) we have

    $$\begin{aligned} \Vert \ell _{M}(t,x)\mathbf {1}_{[0,2]}(t)\Vert _p^p&=L^{-(3-p)M}\Vert \ell _{0}(t,x)\mathbf {1}_{[0,2L^{2M}]}(t)\Vert _p^p \nonumber \\&\le C L^{-(3-p)M}\bigg (1+\int _2^{2L^{2M}} t^{\frac{3}{2}(1-p)} dt \bigg )\le C L^{-\lambda M} \end{aligned}$$
    (145)

    with \(\lambda >0\) for \(p<3\).

  2. (b)

    The claim follows with the same strategy employed in item (a). \(\square \)

Appendix C: Proof of Lemma 15

First of all, we note that we can replace \( H_n\) (the heat kernel on \( {\mathbb T}_n\)) by H (the heat kernel on \( {\mathbb R}\)) in \( {{\mathfrak C}_n}\) and \( {\mathcal Y}_n \). Indeed, letting \(\tilde{\mathcal K}\) denote the kernels \( {{\mathfrak C}_n}\), \( {\mathcal Y}_n \) and \( J_n \) built out of H we get

$$\begin{aligned} |\tilde{\mathcal K}(z)-{\mathcal K}(z)|\le Ce^{-|x|}\mathbf {1}_{[0,2]}(t). \end{aligned}$$

Therefore, in the following proof we will consider kernels built with H and drop the tildes.

Let \( \epsilon = L^{-(N-n)}\) and \( \chi _{\epsilon }=\chi _{N-n}\). We will indicate the scale dependence of the kernels by \( \epsilon \) instead of n, i.e. \( {\mathfrak C}_n = {\mathfrak C}_{\epsilon }\) and so on. We work in Fourier space in the x variable:

$$\begin{aligned} \widehat{\mathfrak C}_{\epsilon }(t,p)&= p^2e^{-tp^2} \int _0^{\infty } ds \, e^{-2sp^2} \chi _{\epsilon }(t + s)\chi _{\epsilon }( s) = e^{-tp^2}h_\epsilon (t,\sqrt{t} p) \end{aligned}$$

where \( h_{\epsilon }\) is defined in (132) and it is uniformly bounded on \({\mathbb R}_+\times {\mathbb R}\). For \(Y_{\epsilon }\) we have

$$\begin{aligned} \widehat{Y}_{\epsilon }(t,p)&= {\mathrm i}p \, e^{-tp^2} \chi _{\epsilon }(t ). \end{aligned}$$

Thus

$$\begin{aligned} \widehat{J}_{\epsilon }(t,p)&={\mathrm i}\int _{\mathbb R}dq (p+q)e^{-t((p+q)^2+q^2)}h_\epsilon (t,\sqrt{t} q) \chi _{\epsilon }(t )= \frac{{\mathrm i}p}{\sqrt{t}}\widehat{\mathcal W}_\epsilon (t,\sqrt{t}p) \end{aligned}$$
(146)

where

$$\begin{aligned} \widehat{\mathcal W}_\epsilon (t,r)=\int _{\mathbb R}dq(1+q/r)e^{-((r+q)^2+q^2)}h_\epsilon ( t,q) \chi _{\epsilon }(t ). \end{aligned}$$

\(\widehat{\mathcal W}_\epsilon \) is an entire function in r with

$$\begin{aligned} |\widehat{\mathcal W}_\epsilon (t,r)|\le C e^{-c(\mathrm {Re}\, {r})^2} \end{aligned}$$
(147)

if \(|\mathrm {Im}\,{r}|\le 1\) (we used \(h( t,q)=h(t,-q)\)). Hence in particular the inverse Fourier transform \({\mathcal W}_\epsilon (t,x)\) is in \(L^1({\mathbb R})\) uniformly in t. We end up with the claim with

$$\begin{aligned} W_\epsilon (z)=\frac{1}{{t}}{\mathcal W}_\epsilon (t,x/\sqrt{t}). \end{aligned}$$
  1. (b)

    It suffices to study \(A_\epsilon =Y_\epsilon *\partial _x W_\epsilon \). We get

    $$\begin{aligned} \widehat{A}_{\epsilon }(t,p)&=-p^2\int _0^t e^{-(t-s)p^2} \chi _{\epsilon }(t-s )\frac{1}{\sqrt{s}}\widehat{W}_\epsilon (s,\sqrt{s}p)ds=\frac{1}{\sqrt{t}}\hat{a}_\epsilon (t,\sqrt{t}p) \end{aligned}$$

    with

    $$\begin{aligned} \hat{a}_\epsilon (t,p)=-p^2\int _0^1e^{-(1-\sigma )p^2} \chi _{\epsilon }((1-\sigma )t )\frac{1}{\sqrt{\sigma }}\widehat{W}_\epsilon (\sigma t,\sqrt{\sigma }p)d\sigma . \end{aligned}$$

    \(\hat{a}_\epsilon \) is entire satisfying (147) and the claim follows.

  2. (c)

    These claims follow from

    $$\begin{aligned} |\widehat{\mathcal W}_\epsilon (t,r)-\widehat{\mathcal W}'_\epsilon (t,r)|\le C e^{-c(\mathrm {Re}\, {r})^2}\mathbf {1}_{[{_1\over ^2}\epsilon ^2,2\epsilon ^2]}(t). \end{aligned}$$
    (148)
  3. (d)

    Let \(B_{\epsilon }=\partial _x {\mathfrak C}_{\epsilon }^2 = 2{\mathfrak C}_{\epsilon }\partial _x{\mathfrak C}_{\epsilon }\). Then

    $$\begin{aligned} \widehat{B}_{\epsilon }(t,p)&=2{\mathrm i}\int _{\mathbb R}dq (p+q)e^{-t((p+q)^2+q^2)}h_\epsilon (t,\sqrt{t} p)h_\epsilon (t,\sqrt{t} q). \end{aligned}$$

    Comparing with (146) and noting that

    $$\begin{aligned} |2h_\epsilon ( t,\sqrt{t} p)-\chi _{\epsilon }(t )|\le C(\mathbf {1}_{[{_1\over ^2}\epsilon ^2,2\epsilon ^2]}(t)+\mathbf {1}_{[{_1\over ^2},2]}(t)) \end{aligned}$$

    we get

    $$\begin{aligned} |J_{\epsilon }(z)-\partial _x {\mathfrak C}_{\epsilon }(z)^2|\le C \left( \epsilon ^{-3}e^{-c|x|/\epsilon }\mathbf {1}_{[{_1\over ^2}\epsilon ^2,2\epsilon ^2]}(t)+e^{-c|x|}\mathbf {1}_{[{_1\over ^2},2]}(t)\right) . \end{aligned}$$

    In the same way we get

    $$\begin{aligned} |Y_{\epsilon }(z)-2\partial _x {\mathfrak C}_{\epsilon }(z)|\le C \left( \epsilon ^{-2}e^{-c|x|/\epsilon }\mathbf {1}_{[{_1\over ^2}\epsilon ^2,2\epsilon ^2]}(t)+e^{-c|x|}\mathbf {1}_{[{_1\over ^2},2]}(t)\right) . \end{aligned}$$

    \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupiainen, A., Marcozzi, M. Renormalization of Generalized KPZ Equation. J Stat Phys 166, 876–902 (2017). https://doi.org/10.1007/s10955-016-1636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1636-3

Keywords

Navigation