Skip to main content
Log in

Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Recall that a representation \(\pi _1\) of a \(C^*\)-algebra \({\mathfrak {A}}\) is normal w.r.t. another representation \(\pi _2\), if there is a normal \(*\)- epimorphism \(\rho :\pi _2({\mathfrak {A}})''\rightarrow \pi _1({\mathfrak {A}})''\) such that \(\rho \circ \pi _2=\pi _1\). Two representations \(\pi _1\) and \(\pi _2\) are called quasi-equivalent if \(\pi _1\) is normal w.r.t. \(\pi _2\), and conversely, \(\pi _2\) is normal w.r.t. \(\pi _1\). This means that there is an isomorphism \(\alpha :\pi _1({\mathfrak {A}})''\rightarrow \pi _2({\mathfrak {A}})''\) such that \(\alpha \circ \pi _1=\pi _2\). Two states \(\varphi \) and \(\psi \) of \({\mathfrak {A}}\) are said be quasi-equivalent if the GNS representations \(\pi _\varphi \) and \(\pi _\psi \) are quasi-equivalent [22].

References

  1. Accardi, L., Fidaleo, F., Mukhamedov, F.: Markov states and chains on the CAR algebra. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10, 165–183 (2007)

  2. Accardi, L., Fidaleo, F.: On the structure of quantum Markov fields. In: Freudenberg, W. (ed.) Proceedings Burg Conference 15–20 March 2001. World Scientific, QP-PQ Series, vol. 15, pp. 1–20 (2003)

  3. Accardi, L., Fidaleo, F.: Quantum Markov fields. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 123–138 (2003)

  4. Accardi, L., Mukhamedov, F., Saburov, M.: On Quantum Markov Chains on Cayley tree I: uniqueness of the associated chain with \(XY\)-model on the Cayley tree of order two. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, 443–463 (2011)

  5. Accardi, L., Ohno, H., Mukhamedov, F.: Quantum Markov fields on graphs. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, 165–189 (2010)

  6. Accardi, L.: On the noncommutative Markov property. Funct. Anal. Appl. 9, 1–8 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Accardi, L., Mukhamedov, F., Saburov, M.: Uniqueness of quantum Markov chains associated with an \(XY\)-model on the Cayley tree of order 2. Math. Notes 90, 8–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Accardi, L., Mukhamedov, F., Saburov, M.: On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with \(XY\)-model on the Cayley tree of order three. Ann. Henri Poincare 12, 1109–1144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Accardi, L., Mukhamedov, F., Saburov, M.: On Quantum Markov chains on cayley tree III: ising model. J. Stat. Phys. 157, 303–329 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a Theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Accardi, L., Fidaleo, F.: Non homogeneous quantum Markov states and quantum Markov fields. J. Funct. Anal. 200, 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Accardi, L., Fidaleo, F.: Entangled Markov chains. Annali di Matematica Pura e Applicata 184, 327–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. R. Irish Acad. 83A, 251–263 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Accardi, L., Liebscher, V.: Markovian KMS-states for one-dimensional spin chains. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 645–661 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Accardi, L., Watson, G.S.: Markov states of the quantum electromagnetic field. Phys. Rev. A 35, 1275–1283 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Affleck, L., Kennedy, E., Lieb, E.H., Tasaki, H.: Valence bond ground states in isortopic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. Araki, H., Evans, D.: A \(C^*\)-algebra approach to phase transition in the two-dimensional Ising model. Commun. Math. Phys. 91, 489–503 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Baker, B.M., Powers, R.T.: Product states of certain group-invariant AF-algebras. J. Oper. Theory 16, 3–50 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)

    MATH  Google Scholar 

  20. Biskup, M., Chayes, L., Starr, Sh: Quantum spin systems at positive temperature. Commun. Math. Phys. 269, 611–657 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bleher, P.M.: Extremity of the disordered phase in the Ising model on the Bethe lattice. Commun. Math. Phys. 128, 411–419 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York (1987)

    Book  MATH  Google Scholar 

  23. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, New York (1987)

    Book  MATH  Google Scholar 

  24. Dobrushin, R.L.: Description of gibbsian random fields by means of conditional probabilities. Probab. Theory Appl. 13, 201–229 (1968)

    MATH  Google Scholar 

  25. Fannes, M., Nachtergaele, B., Werner, R.F.: Ground states of VBS models on Cayley trees. J. Stat. Phys. 66, 939–973 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fidaleo, F., Mukhamedov, F.: Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras. Probab. Math. Stat. 24, 401–418 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Fröhlich, J., Israel, R., Lieb, E., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gandolfo, D., Rakhmatullaev, M., Rozikov, U.: Boundary conditions for translation-invariant Gibbs measures of the Potts model on Cayley trees. arXiv:1504.01265

  30. Ganikhodjaev, N.N., Pah, C.H., Wahiddin, M.R.B.: Exact solution of an Ising model with competing interactions on a Cayley tree. J. Phys. A: Math. Gen. 36, 4283 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ganikhodzhaev, N.N., Mukhamedov, F.M.: On some properties of a class of diagonalizable states of von Neumann algebras. Math. Notes 76, 329–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Georgi, H.-O.: Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter, Berlin (1988)

    Book  Google Scholar 

  33. Golodets, V.Y., Zholtkevich, G.N.: Markovian KMS states. Theory Math. Phys. 56, 686–690 (1983)

    Article  MathSciNet  Google Scholar 

  34. Ibinson, B., Linden, N., Winter, A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277, 289–304 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ioffe, D.: On the extremality of the disordered state for the ising model on the Bethe Lattice. Lett. Math. Phys. 37, 137–143 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liebscher, V.: Markovianity of quantum random fields. In: Freudenberg, W. (ed.) Proceedings Burg Conference 15–20 March 2001. World Scientific, QP-PQ Series, vol. 15, pp. 151–159 (2003)

  37. Matsui, T.: On quasi-equivalence of quasifree states of gauge invariant CAR algebars. J. Oper. Theory 17, 281–290 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Matsui, T.: A characterization of pure nitely correlated states. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 647–661 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mukhamedov, F., Barhoumi, A., Souissi, A.: On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree (submitted)

  40. Mukhamedov, F.M.: On factor associated with the unordered phase of \(\lambda \)-model on a Cayley tree. Rep. Math. Phys. 53, 1–18 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras. J. Stat. Phys. 114, 825–848 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras II. J. Stat. Phys. 119, 427–446 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  44. Ostilli, M., Mukhamedov, F., Mendes, J.F.F.: Phase diagram of an Ising model with competitive interactions on a Husimi tree and its disordered counterpart. Phys. A 387, 2777–2792 (2008)

    Article  MathSciNet  Google Scholar 

  45. Ostilli, M.: Cayley trees and Bethe lattices: a concise analysis for mathematicians and physicists. Phys. A 391, 3417–3423 (2012)

    Article  MathSciNet  Google Scholar 

  46. Peruggi, F: Probability measures and Hamiltonian models on Bethe lattices. II. J. Math. Phys. 25, 3316 (1984)

  47. Peruggi, F: Probability measures and Hamiltonian models on Bethe lattices. I. J. Math. Phys. 25, 3303 (1984)

  48. Powers, R., Stormer, E.: Free states of the canonical anticommutation relations. Commum. Math. Phys. 16, 1–33 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Preston, C.: Gibbs States on Countable Sets. Cambridge University Press, London (1974)

    Book  MATH  Google Scholar 

  50. Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  51. Rozikov, U.A., Rakhmatullaev, M.M.: Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on a Cayley tree. Theory Math. Phys. 160, 1292–1300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sachdev, S.: Quantum Phase Transitions. Cambridge Univ Press (2011)

  53. Spataru, A.: Construction of a Markov field on an infinite tree. Adv. Math. 81, 105–116 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Spitzer, F.: Markov random fields on an infinite tree. Ann. Probab. 3, 387–398 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Von Mukhamedov, F.M.: Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice. Theory Math. Phys. 123, 489–493 (2000)

  56. Zachary, S.: Countable state space Markov random fields and Markov chains on trees. Ann. Probab. 11, 894–903 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zachary, S.: Bounded attractive and repulsive Markov specifications on trees and on the one-dimensional lattice. Stoch. Process. Appl. 20, 247–256 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to professors L. Accardi and F. Fidaleo for their fruitful discussions and useful suggestions on the definition of the phase transition. The authors also thank referees whose valuable comments and remarks improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F., Barhoumi, A. & Souissi, A. Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree. J Stat Phys 163, 544–567 (2016). https://doi.org/10.1007/s10955-016-1495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1495-y

Keywords

Mathematics Subject Classification

Navigation