Skip to main content

Advertisement

Log in

Level Spacing for Non-Monotone Anderson Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove localization and probabilistic bounds on the minimum level spacing for a random block Anderson model without monotonicity. Using a sequence of narrowing energy windows and associated Schur complements, we obtain detailed probabilistic information about the microscopic structure of energy levels of the Hamiltonian, as well as the support and decay of eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Combinatoric factors are a convenient bookkeeping device when estimating sums. If \(\sum _\alpha c_\alpha ^{-1} \le 1\) for some positive constants \(c_\alpha \), then \(\sum _\alpha X_\alpha \le \sup _\alpha |X_\alpha |c_\alpha \). We call \(c_\alpha \) a combinatoric factor.

References

  1. Anderson, P.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  2. Bach, V.: A tutorial approach to the renormalization group and the smooth Feshbach map. In: Dereziński, J., Siedentop, H. (eds.) Large Coulomb Systems. Lecture Notes in Physics, vol. 695, pp. 1–14. Springer, Berlin (2006)

  3. Bach, V., Fröhlich, J., Sigal, I.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. (NY) 137, 205–298 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellissard, J.V., Hislop, P.D., Stolz, G.: Correlation estimates in the Anderson model. J. Stat. Phys. 129, 649–662 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: An approach to Wegner’s estimate using subharmonicity. J. Stat. Phys. 134, 969–978 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brudnyi, A.: On local behavior of analytic functions. J. Funct. Anal. 169, 481–493 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Z., Elgart, A.: The weak localization for the alloy-type Anderson model on a cubic lattice. J. Stat. Phys. 148, 1006–1039 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chulaevsky, V.: From fixed-energy localization analysis to dynamical localization: an elementary path. J. Stat. Phys. 154, 1391–1429 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Combes, J.-M., Germinet, F., Klein, A.: Generalized eigenvalue-counting estimates for the Anderson model. J. Stat. Phys. 135, 201–216 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Combes, J.M., Hislop, P.D., Klopp, F., Nakamura, S.: The Wegner estimate and the integrated density of states for some random operators. Proc. Math. Sci. 112, 31–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elgart, A., Schmidt, D.: Eigenvalue counting inequalities, with applications to Schrödinger operators. arXiv:1306.3459

  12. Elgart, A., Shamis, M., Sodin, S.: Localisation for non-monotone Schrödinger operators. J. Eur. Math. Soc. 16, 909–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elgart, A., Tautenhahn, M., Veselić, I.: Localization via fractional moments for models on Z with single-site potentials of finite support. J. Phys. A Math. Theor. 43, 474021 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Elgart, A., Tautenhahn, M., Veselić, I.: Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method. Ann. Henri Poincaré 12, 1571–1599 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Germinet, F., Klopp, F.: Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges. Ann. Henri Poincaré 14, 1263–1285 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Germinet, F., Klopp, F.: Spectral statistics for random Schrödinger operators in the localized regime. J. Eur. Math. Soc. 16, 1967–2031 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glimm, J., Jaffe, A.: A Functional Integral Point of View. Quantum Physics. Springer, Berlin (1987)

    MATH  Google Scholar 

  19. Graf, G.M., Vaghi, A.: A remark on the estimate of a determinant by Minami. Lett. Math. Phys. 79, 17–22 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Imbrie, J.Z.: Multi-scale Jacobi method for Anderson localization. Commun. Math. Phys. 341, 491–521 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Imbrie, J.Z.: On many-body localization for quantum spin chains. arXiv:1403.7837

  22. Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model. Ann. Henri Poincaré 8, 27–36 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Klein, A., Molchanov, S.: Simplicity of eigenvalues in the Anderson model. J. Stat. Phys. 122, 95–99 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Klein, A., Lenoble, O., Müller, P.: On Mott’s formula for the ac-conductivity in the Anderson model. Ann. Math. 166, 549–577 (2007)

    Article  MATH  Google Scholar 

  25. Klopp, F.: Localization for some continuous random Schrödinger operators. Commun. Math. Phys. 167, 553–569 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Krüger, H.: Localization for random operators with non-monotone potentials with exponentially decaying correlations. Ann. Henri Poincaré 13, 543–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Naboko, S., Nichols, R., Stolz, G.: Simplicity of eigenvalues in Anderson-type models. Ark. för Mat. 51(1), 157–183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakano, F.: The repulsion between localization centers in the Anderson model. J. Stat. Phys. 123, 803–810 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Tautenhahn, M., Veselić, I.: Minami’s estimate: beyond rank one perturbation and monotonicity. Ann. Henri Poincaré 15, 737–754 (2013)

    Article  ADS  MATH  Google Scholar 

  31. Veselić, I.: Wegner estimate and the density of states of some indefinite alloy-type Schrödinger operators. Lett. Math. Phys. 59, 199–214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Veselić, I.: Wegner estimate for discrete alloy-type models. Ann. Henri Poincaré 11, 991–1005 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Veselić, I.: Wegner estimates for sign-changing single site potentials. Math. Phys. Anal. Geom. 13, 299–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B 44, 9–15 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was conducted in part while the author was visiting the Institute for Advanced Study in Princeton, supported by The Fund for Math and The Ellentuck Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Z. Imbrie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbrie, J.Z., Mavi, R. Level Spacing for Non-Monotone Anderson Models. J Stat Phys 162, 1451–1484 (2016). https://doi.org/10.1007/s10955-016-1461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1461-8

Keywords

Navigation