Skip to main content

Advertisement

Log in

Exact Equalities and Thermodynamic Relations for Nonequilibrium Steady States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study thermodynamic operations which bring a nonequilibrium steady state (NESS) to another NESS in physical systems under nonequilibrium conditions. We model the system by a suitable Markov jump process, and treat thermodynamic operations as protocols according to which the external agent varies parameters of the Markov process. Then we prove, among other relations, a NESS version of the Jarzynski equality and the extended Clausius relation. The latter can be a starting point of thermodynamics for NESS. We also find that the corresponding nonequilibrium entropy has a microscopic representation in terms of symmetrized Shannon entropy in systems where the microscopic description of states involves “momenta”. All the results in the present paper are mathematically rigorous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This part can be read as a summary of the whole paper.

  2. To be precise, this is true when there always is a nonvanishing temperature difference. When \(\beta _1(t)=\beta _2(t)\), the currents are very small and we rather have \(J^\dagger _k(t)\simeq -J_k(-t)\).

  3. The standard generator of a stochastic process is given by the transpose of \(\mathsf {R}\).

  4. Throughout the present paper, the entropy production always means the entropy production in the heat baths.

  5. The approach to equilibrium is indeed a nonequilibrium phenomenon that can be studied in the framework of equilibrium dynamics.

  6. We assume here (and in what follows) that each transition is associated with only a single bath. See also Sect. 2.4.

  7. In a formulations based on a stochastic process (as in the present work), the relation (2.17) is nothing more than an interpretation. In more microscopic formulations based on mechanics, one may justify such relations. See, e.g., [43].

  8. Such measurements are indeed possible in modern calorimetry.

  9. One strategy is to measure the back action from the system to the generator (such as a coil) of the field. In a colloidal system it may be possible to determine the work done by the field by precisely measuring the positions of charged particles.

  10. In most of realistic situations for heat conduction, only some small portions of the system is in touch with the heat baths. To model such a situation by using a system of particles on a lattice, we assume that the energy of the system changes only when a particle hops within one of the portions which are in touch with the baths. In other words, if an allowed transition \({x\rightarrow y}\) is such that a particle hops outside the portions, then one must have \(H^\nu _x=H^\nu _y\). We further use the transition rule (2.28) so as to make the corresponding transition rate (which is indeed 1) independent of any inverse temperatures.

  11. We define the force in this setting as \(f_{{x\rightarrow y}}=f d_{x\rightarrow y}\). The force \(f_{x\rightarrow y}\) is said to be conservative if one can write \(f_{{x\rightarrow y}}=U_x-U_y\) for any \(x,y\in \mathcal{S}\) with a suitable function (i.e., potential) \(U_x\).

  12. A convenient derivation is to start from (3.5) with \(\kappa =1\), and apply the cumulant expansion as above.

  13. In a system with parameters (2.34) with a nonequilibrium protocol \((\beta ,\nu (t),f(t))\), for example, we choose the equilibrium protocol as \((\beta ,\nu (t),0)\).

  14. For simplicity we only consider protocols in which the reference inverse temperature \(\beta \) is fixed. It is not difficult to treat protocols where \(\beta \) varies; one simply redefines \(\beta \) properly when one decomposes the whole protocol into a sum of step protocols.

  15. To be consistent with the notation introduced in Sect. 2.1, we are here taking \(\tau _0=\{(N-1)/(N+1)\}\tau \). In this case \(\tau _0\) also diverges when we let \(\tau \uparrow \infty \).

  16. Such a technique is common, for example, in the large deviation theory [42]. Similar technique was used for steady state thermodynamics in [7].

  17. The difference between \(\bigl \langle \Psi ^{(\alpha )}\bigr \rangle ^{\tau ,(\alpha _\mathrm {eq})}_{x\rightarrow }\) and \(\bigl \langle \Psi ^{(\alpha )}\bigr \rangle ^{\tau ,(\alpha )}_{x\rightarrow }\) is proportional to \(\epsilon ^2\), but is also roughly proportional to \(\tau \). Thus the difference diverges as \(\tau \uparrow \infty \).

  18. It may be also reasonable to consider a model in which \(\lambda ^\alpha _x\ne \lambda ^\alpha _{x^*}\). In such a model, one should include the contribution from \(\lambda ^\alpha _x/\lambda ^\alpha _{x^*}\) into the definition of \(\Theta ^{{\hat{\alpha }}}[\hat{x}]\) so as to keep the symmetry (10.3) valid (see [45]). Then all the results in the present section remain valid.

  19. One can also compute the expectation value of the entropy production rate explicitly as \(\sum _x\sigma _x^{(\beta _1',\beta _2')}\,p_x(t) =\sigma _\mathrm {st}^{(\beta _1',\beta _2')} +[\beta _1'\{u(\beta _1)-u(\beta _1')\} +\beta _2'\{u(\beta _2)-u(\beta _2')\}] (2L)^{-1}\sum _{j=1}^L\lambda ^jt^{j-1}e^{-\lambda t}\) for \(t\ge 0\). It decays exponentially to the steady value.

  20. The term \(O(\epsilon ^2\delta )\) is nonvanishing.

References

  1. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Komatsu, S.T., Nakagawa, N., Sasa, S.-I., Tasaki, H.: Steady state thermodynamics for heat conduction—microscopic derivation, Phys. Rev. Lett. 100, 230602 (2008). arXiv:0711.0246

  3. Komatsu, T.S., Nakagawa, N., Sasa S.-I., Tasaki, H.: Entropy and nonlinear nonequilibrium thermodynamic relation for heat conducting steady states. J. Stat. Phys. 142, 127–153 (2011). arXiv:1009.0970

  4. Landauer, R.: \(dQ= TdS\) far from equilibrium. Phys. Rev. A 18, 255–266 (1978)

    Article  ADS  Google Scholar 

  5. Ruelle, D.: Extending the definition of entropy to nonequilibrium steady states. Proc. Natl. Acad. Sci. USA. 100, 3054–3058 (2003). arXiv:cond-mat/0303156

  6. Saito, K., Tasaki, H.: Extended Clausius relation and entropy for nonequilibrium steady states in feat conducting quantum systems. J. Stat. Phys. 145, 1275–1290 (2011). arXiv:1105.2168

  7. Sagawa, T., Hayakawa, H.: Geometrical expression of excess entropy production. Phys. Rev. E 84, 051110 (2011). arXiv:1109.0796

  8. Yuge, T., Sagawa, T., Sugita, A., Hayakawa, H.: Geometrical excess entropy production in nonequilibrium quantum systems. J. Stat. Phys. 153, 412–441 (2013). arXiv:1305.5026

  9. Hatano, T., Sasa, S.-I.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001). arXiv:cond-mat/0010405

  10. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Thermodynamic transformations of nonequilibrium states. J. Stat. Phys. 149, 773–802 (2012). arXiv:1206.2412

  11. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Clausius inequality and optimality of quasistatic transformations for nonequilibrium stationary states. Phys. Rev. Lett. 110, 020601 (2013). arXiv:1208.1872

  12. Jona-Lasinio, G.: Thermodynamics of stationary states. J. Stat. Mech. 2014, P02004 (2014)

    Article  MathSciNet  Google Scholar 

  13. Maes, C., Netocny, K.: A nonequilibrium extension of the Clausius heat theorem. J. Stat. Phys. 154, 188–203 (2014). arXiv:1206.3423

  14. Sasa, S.-I.: Possible extended forms of thermodynamic entropy. J. Stat. Mech. P01004 (2014). arXiv:1309.7131

  15. Sasa, S.-I., Tasaki, H.: Steady state thermodynamics. J. Stat. Phys. 125, 125–224 (2006). arXiv:cond-mat/0411052

  16. Pradhan, P., Amann, C.P., Seifert, U.: Nonequilibrium steady states in contact: approximate thermodynamic structure and zeroth law for driven lattice gases. Phys. Rev. Lett. 105, 150601 (2010). arXiv:1002.4349

  17. Pradhan, P., Amann, C.P., Seifert, U.: Approximate thermodynamic structure for driven lattice gases in contact. Phys. Rev. E 84, 041104 (2011). arXiv:1107.5434

  18. Dickman, R., Motai, R.: Inconsistencies in steady state thermodynamics (2014). (in press) arXiv:1401.1678

  19. Boksenbojm, E., Maes, C., Netocny, K., Pesek, J.: Heat capacity in nonequilibrium steady states. Euro Phys. Lett. 96, 40001 (2011). arXiv:1109.3054

  20. Mandal, D.: Nonequilibrium heat capacity. Phys. Rev. E 88, 062135 (2013). arXiv:1311.7176

  21. Nakagawa, N.: Universal exact expression for adiabatic pumping in terms of non-equilibrium steady states (2014) (in press). arXiv:1401.4242

  22. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Fluctuations in stationary nonequilibrium states of irreversible processes. Phys. Rev. Lett. 87, 040601 (2001). arXiv:cond-mat/0104153

  23. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Large deviation approach to non equilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. 37, 611–643 (2006). arXiv:math/0602557

  24. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135, 857–872 (2009). arXiv:0807.4457

  25. Jona-Lasinio, G.: From fluctuations in hydrodynamics to nonequilibrium thermodynamics. Prog. Theor. Phys. Suppl. 184, 262 (2010). arXiv:1003.4164

  26. Derrida, B., Lebowitz, J.L., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly solvable case. Phys. Rev. Lett. 87, 150601 (2001). arXiv:cond-mat/0105110

  27. Derrida, B., Lebowitz, J.L., Speer, E.R.: Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003). arXiv:cond-mat/0205353

  28. Bodineau, T., Derrida, B.: Current fluctuations in nonequilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92, 180601 (2004). arXiv:cond-mat/0402305

  29. Lieb, E.H., Yngvason, J.: The entropy concept for non-equilibrium states. Proc. R. Soc. A 469, 20130408 (2013). http://rspa.royalsocietypublishing.org/content/469/2158/20130408

  30. Seifert, U.: Stochastic thermodynamics, fluctuation theorems, and molecular machines. Rep. Prog. Phys. 75, 126001 (2012). arXiv:1205.4176

  31. Spinny, R.E., Ford, I.J.: Non-equilibrium thermodynamic systems with odd and even variables. Phys. Rev. Lett. 108, 170603 (2012). arXiv:1201.0904

  32. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997). arXiv:cond-mat/9610209

  33. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999). arXiv:cond-mat/9901352

  34. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361, (2000). arXiv:cond-mat/9908420

  35. Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005). arXiv:cond-mat/0503686

  36. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003). arXiv:cond-mat/0202501

  37. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009). arXiv:0902.3955

  38. Baerts, P., Basu, U., Maes, C., Safaverdi, S.: The frenetic origin of negative differential response. Phys. Rev. E 88, 052109 (2013). arXiv:1308.5613

  39. Nakagawa, N.: Work relation and the second law of thermodynamics in nonequilibrium steady states. Phys. Rev. E 85, 051115 (2012). arXiv:1109.1374

  40. Komatsu, T.S., Nakagawa, N.: An expression for stationary distribution in nonequilibrium steady state. Phys. Rev. Lett. 100, 030601 (2008). arXiv:0708.3158

  41. Maes, C., Netocny, K.: Rigorous meaning of McLennan ensembles. J. Math. Phys. 51, 015219 (2010). arXiv:0911.1032

  42. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (1998)

    Book  MATH  Google Scholar 

  43. Komatsu, T.S., Nakagawa, N., Sasa S.-I., Tasaki, H.: Representation of nonequilibrium steady states in large mechanical systems. J. Stat. Phys. 134, 401–423 (2009). arXiv:0805.3023

  44. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  45. Itami, M., Sasa, S.-I.: Nonequilibrium statistical mechanics for adiabatic piston problem. J. Stat. Phys. 158, 37–56 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Hisao Hayakawa, Masato Itami, Nobuyasu Ito, Chris Jarzynski, Gianni Jona-Lasinio, Joel Lebowitz, Christian Maes, Karel Netocny, Yoshi Oono, Glenn Paquette, Takahiro Sagawa, Keiji Saito, Herebert Spohn, and Akira Shimizu for valuable discussions. The present study was supported by KAKENHI Nos. 22340109, 23540435, and 25103002, by the JSPS Core-to-Core program “Non-equilibrium dynamics of soft-matter and information”, and partially by JSPS and Leading Research Organizations, namely NSERC, ANR, DFG, RFBR, RCUK and NSF as Partner Organizations under the G8 Research Councils Initiative for Multilateral Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Tasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T.S., Nakagawa, N., Sasa, Si. et al. Exact Equalities and Thermodynamic Relations for Nonequilibrium Steady States. J Stat Phys 159, 1237–1285 (2015). https://doi.org/10.1007/s10955-015-1221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1221-1

Keywords

Navigation