Skip to main content
Log in

Optimal Linear Glauber Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate (\(w_j\)) in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear \(w_j\) are obtained using a simple Moore–Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg–Landau equation from the Glauber’s microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Michael, T., Trimper, S., Schulz, M.: Glauber model in a quantum representation. Phys. Rev. E 73, 062101 (2006)

    Article  ADS  Google Scholar 

  3. Grynberg, M.D., Stinchcombe, R.B.: Nonuniversal disordered Glauber dynamics. Phys. Rev. E 87, 062102 (2013)

    Article  ADS  Google Scholar 

  4. Uchida, M., Shirayama, S.: Effect of initial conditions on Glauber dynamics in complex networks. Phys. Rev. E 75, 046105 (2007)

    Article  ADS  Google Scholar 

  5. Kong, X.-M., Yang, Z.R.: Critical dynamics of the kinetic Glauber–Ising model on hierarchical lattices. Phys. Rev. E 69, 016101 (2004)

    Article  ADS  Google Scholar 

  6. Godreche, C., Luck, J.M.: Response of non-equilibrium systems at criticality: exact results for the Glauber–Ising chain. J. Phys. A Math. Gen. 33, 1151 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Pini, M.G., Rettori, A.: Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models. Phys. Rev. B 76, 064407 (2007)

    Article  ADS  Google Scholar 

  8. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107, 068701 (2011)

    Article  ADS  Google Scholar 

  9. Goncalves, L.L., de Haro, M.L., Tagoena-Mart-nez, J., Stinchcombe, R.B.: Nagel scaling, elaxation, and universality in the kinetic Ising model on an alternating isotopic chain. Phys. Rev. Lett. 84, 1507 (2000)

    Article  ADS  Google Scholar 

  10. Stanley, H.E., Stauffer, D., Kertesz, J., Herrmann, H.J.: Dynamics of spreading phenomena in two-dimensional Ising models. Phys. Rev. Lett. 59, 2326 (1987)

    Article  ADS  Google Scholar 

  11. Fisher, D.S., Le Doussal, P., Monthus, C.: Random walks, reaction-diffusion, and nonequilibrium dynamics of spin chains in one-dimensional random environments. Phys. Rev. Lett. 80, 3539 (1998)

    Article  ADS  Google Scholar 

  12. K-t, Leung, Neda, Z.: Response in kinetic Ising model to oscillating magnetic fields. Phys. Lett. A 246, 505 (1998)

    Article  ADS  Google Scholar 

  13. Vojta, T.: Chaotic behavior and damage spreading in the Glauber Ising model: a master equation approach. Phys. Rev. E 55, 5157 (1997)

    Article  ADS  Google Scholar 

  14. Puri, S.: In: Puri, S., Wadhawan, V. (ed) Kinetics of Phase Transitions. CRC Press, Boca Raton (2009)

  15. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics, chap. 2, 8 and 9. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  16. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles, chap. 2. Elsevier, Amsterdam (2011)

    Google Scholar 

  17. Scheucher, M., Spohn, H.: A soluble kinetic model for spinodal decomposition. J. Stat. Phys. 53, 279 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. de Oliveira, M.J.: Linear Glauber model. Phys. Rev. E 67, 066101 (2003)

    Article  ADS  Google Scholar 

  19. Hase, M.O., Salinas, S.R., Tome, T., de Oliveira, M.J.: Fluctuation-dissipation theorem and the linear Glauber model. Phys. Rev. E 73, 056117 (2006)

    Article  ADS  Google Scholar 

  20. Campbell, S.L., Meyer, C.D.: Generalized Inverse of Linear Transformations. SIAM, Philadelphia (2008)

    Google Scholar 

  21. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet part I. Phys. Rev. 60, 252 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  22. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Salman, Z., Adler, J.: High and low temperature series estimates for the critical temperature of the 3D Ising model. Int. J. Mod. Phys. C 09, 195 (1998)

    Article  ADS  Google Scholar 

  24. Livet, F.: The cluster updating Monte Carlo algorithm applied to the 3D Ising problem. Europhys. Lett. 16, 139 (1991)

    Article  ADS  Google Scholar 

  25. Talapov, A.L., Blote, H.W.J.: The magnetization of the 3D Ising model. J. Phys. A Math. Gen. 29, 5727 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Bray, A.J.: Theory of phase ordering kinetics. Adv. Phys. 43, 357 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sahoo, S., Chatterjee, S.: Optimal linear Kawasaki model. arXiv:1404.6027 (2014)

Download references

Acknowledgments

SS thanks Prof. S. Ramasesha for his financial support through his various projects from IFCPAR and DST, India, and SKG thanks CSIR, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Kanti Ganguly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Ganguly, S.K. Optimal Linear Glauber Model. J Stat Phys 159, 336–357 (2015). https://doi.org/10.1007/s10955-015-1188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1188-y

Keywords

Navigation