Skip to main content

Advertisement

Log in

Phase Diagram of Inhomogeneous Percolation with a Defect Plane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathbb {L}}\) be the \(d\)-dimensional hypercubic lattice and let \({\mathbb {L}}_0\) be an \(s\)-dimensional sublattice, with \(2 \le s < d\). We consider a model of inhomogeneous bond percolation on \({\mathbb {L}}\) at densities \(p\) and \(\sigma \), in which edges in \({\mathbb {L}}\setminus {\mathbb {L}}_0\) are open with probability \(p\), and edges in \({\mathbb {L}}_0\) open with probability \(\sigma \). We generalize several classical results of (homogeneous) bond percolation to this inhomogeneous model. The phase diagram of the model is presented, and it is shown that there is a subcritical regime for \(\sigma < \sigma ^*(p)\) and \(p<p_c(d)\) (where \(p_c(d)\) is the critical probability for homogeneous percolation in \({\mathbb {L}}\)), a bulk supercritical regime for \(p>p_c(d)\), and a surface supercritical regime for \(p<p_c(d)\) and \(\sigma >\sigma ^*(p)\). We show that \(\sigma ^*(p)\) is a strictly decreasing function for \(p\in [0,p_c(d)]\), with a jump discontinuity at \(p_c(d)\). We extend the Aizenman–Barsky differential inequalities for homogeneous percolation to the inhomogeneous model and use them to prove that the susceptibility is finite inside the subcritical phase. We prove that the cluster size distribution decays exponentially in the subcritical phase, and sub-exponentially in the supercritical phases. For a model of lattice animals with a defect plane, the free energy is related to functions of the inhomogeneous percolation model, and we show how the percolation transition implies a non-analyticity in the free energy of the animal model. Finally, we present simulation estimates of the critical curve \(\sigma ^*(p)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Aizenman, M., Delyon, F., Souillard, B.: Lower bounds on the cluster size distributions. J. Stat. Phys. 23, 267–280 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman, M., Grimmett, G.: Strict monotonicity for critical points in percolation and ferromagnetic models. J. Stat. Phys. 63, 817–835 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Barsky, D.J., Grimmett, G.R., Newman, C.M.: Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Relat. Fields 90(1), 111–148 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Broadbent, S.R., Hammersley, J.M.: Percolation processes I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53(3), 629–641 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Clerc, J.P., Carton, J.P., Roussenq, J., Stauffer, D.: Surface effects for percolation. J. Physique Lett. 42(12), 249–252 (1981)

    Article  Google Scholar 

  8. Coniglio, A., Stanley, H.E., Klein, W.: Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation. Phys. Rev. Lett. 42(8), 518–522 (1979)

    Article  ADS  Google Scholar 

  9. De’Bell, K.: Application of the real-space renormalisation group to percolation at a surface. J. Phys. C 12(16), L605–L612 (1979)

    Article  ADS  Google Scholar 

  10. De’Bell, K.: Percolation at a surface: scaling theory and the real space renormalisation group. J. Phys. C 13(19), 3809–3815 (2000)

    Article  MathSciNet  Google Scholar 

  11. De’Bell, K., Essam, J.W.: Mean field theory of percolation with application to surface effects. J. Phys. A 14(8), 1993–2008 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. De’Bell, K., Essam, J.W.: Series expansion studies of percolation at a surface. J. Phys. C 13(25), 4811–4822 (2000)

    Article  ADS  Google Scholar 

  13. De’Bell, K., Lookman, T.: Surface phase transitions in polymer systems. Rev. Mod. Phys. 65(1), 87–113 (1993)

    Article  ADS  Google Scholar 

  14. Essam, J.W.: Percolation and cluster size. Phase Trans. Crit. Phenom. 2, 197–270 (1972)

    Google Scholar 

  15. Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43(7), 833–912 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Flesia, S., Gaunt, D.S., Soteros, C.E., Whittington, S.G.: Statistics of collapsing lattice animals. J. Phys. A 27(17), 5831–5846 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Friedli, S., Ioffe, D., Velenik, Y.: Subcritical percolation with a line of defects. Ann. Probab. 41, 2013–2046 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghiass, M., Rey, A.D., Dabir, B.: Microstructure evolution and simulation of copolymerization reaction using a percolation kinetic gelation model. Polymer 43(3), 989–995 (2002)

    Article  Google Scholar 

  19. Grimmett, G.: Percolation 2nd (edn). Springer, Berlin (1999)

  20. Grimmett, G.R., Marstrand, J.M.: The supercritical phase of percolation is well behaved. Proc. Roy. Soc. (London), Ser. A 430, 439–457 (1990)

  21. Grimmett, G.R., Stirzaker, D.S.: Probability and Random Processes. Oxford University Press, Oxford (2001)

  22. Hammersley, J.M.: Generalisation of the fundamental theorem on subadditive functions. Math. Proc. Cambridge Philos. Soc. 58(2), 235–238 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Hammersley, J.M., Welsh, D.: Origins of percolation theory. Ann. Israel Phys. Soc. 5(47–57), 9 (1983)

    Google Scholar 

  24. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56, 13–20 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups, vol. 31. American Mathematical Society, Providence, RI (1957)

  26. Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Basel (1982)

  28. Kumar, S.K., Douglas, J.F.: Gelation in physically associating polymer solutions. Phys. Rev. Lett. 87(18), 188301 (2001)

    Article  ADS  Google Scholar 

  29. Kunz, H., Souillard, B.: Essential singularity in percolation problems and asymptotic behaviour of cluster size distribution. J. Stat. Phys. 19, 77–106 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lorenz, C.D., Ziff, R.M.: Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57(1), 230–236 (1998)

    Article  ADS  Google Scholar 

  31. Madras, N., Schinazi, R., Schonmann, R.H.: On the critical behavior of the contact process in deterministic inhomogeneous environments. Ann. Probab. 22, 1140–1159 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Madras, N., Soteros, C.E., Whittington, S.G.: Statistics of lattice animals. J. Phys. A 21(24), 4617–4635 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Menshikov, M.V.: Coincidence of critical points in percolation problems. Sov. Math. Doklady 33, 856–859 (1986)

    Google Scholar 

  34. Menshikov, M.V.: Numerical bounds and strict inequalities for critical points of graphs and their subgraphs. Theory Probab. Appl. 32, 599–602 (1987)

    MathSciNet  Google Scholar 

  35. Newman, C.M., Wu, C.C.: Percolation and contact processes with low-dimensional inhomogeneity. Ann. Probab. 25(4), 1832–1845 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Newman, M.E.J., Ziff, R.M.: Efficient monte carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85(19), 4104–4107 (2000)

    Article  ADS  Google Scholar 

  37. Patton, E.V., Wesson, J.A., Rubinstein, M., Wilson, J.C., Oppenheimer, L.E.: Scaling properties of branched polyesters. Macromolecules 22(4), 1946–1959 (1989)

    Article  ADS  Google Scholar 

  38. Paul, G., Ziff, R.M., Stanley, H.E.: Percolation threshold, fisher exponent, and shortest path exponent for four and five dimensions. Phys. Rev. E 64(2), 026115 (2001)

    Article  ADS  Google Scholar 

  39. Rubinstein, M., Colby, R.H., Gillmor, J.R.: Dynamic scaling for polymer gelation. Polym. Prepr. (ACS Div. Polym. Chem.) 30, 81–82 (1989)

  40. Stauffer, D.: Gelation in concentrated critically branched polymer solutions. Percolation scaling theory of intramolecular bond cycles. J. Chem. Soc. Faraday Trans. 2(72), 1354–1364 (1976)

    Article  Google Scholar 

  41. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54(1), 1–74 (1979)

    Article  ADS  Google Scholar 

  42. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis, London (1991)

  43. Stauffer, D., Coniglio, A., Adam, M.: Gelation and critical phenomena. Adv. Polym. Sci. 44, 103–158 (1982)

  44. Wang, J., Zhou, Z., Zhang, W., Garoni, T.M., Deng, Y.: Bond and site percolation in three dimensions. Phys. Rev. E 87(5), 052107 (2013)

    Article  ADS  Google Scholar 

  45. Zhang, Y.: A note on inhomogeneous percolation. Ann. Probab. 22, 803–819 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

EJJvR and NM acknowledge support in the form of NSERC Discovery Grants from the Government of Canada. We also thank Geoffrey Grimmett for some helpful email correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Madras.

Appendix: Differential Inequalities for Inhomogeneous Percolation

Appendix: Differential Inequalities for Inhomogeneous Percolation

In this appendix our aim is to prove the following differential inequalities

$$\begin{aligned}&\mathbf {q} \cdot \nabla \theta ^I (p,\sigma ,\gamma ) \;\le \; 2d\, \chi ^H(p)\,\theta ^I(p,\sigma ,\gamma ) (1-\gamma ) \frac{\partial \theta ^I}{\partial \gamma } , \end{aligned}$$
(95)
$$\begin{aligned}&\theta ^I(p,\sigma ,\gamma ) \;\le \; \gamma \, \frac{\partial \theta ^I}{\partial \gamma } + \left( \theta ^I(p,\sigma ,\gamma )\right) ^2 + \chi ^H(p)\, \theta ^I(p,\sigma ,\gamma ) \left( \mathbf {p}\cdot \nabla \theta ^I(p,\sigma ,\gamma ) \right) \qquad \quad \end{aligned}$$
(96)

where \(\nabla = (\frac{\partial }{\partial p}, \frac{\partial }{\partial \sigma })\) and \(p\le \sigma \). These are Eqs. (29) and (30).

These inequalities are due to Aizenman and Barsky [1] for homogeneous bond percolation (the proofs can be found in reference [19] as well), and we adapt their proofs to the inhomogeneous model.

Let \(B(N)\) be the box of side-length \(2N\) centered at the origin of \({\mathbb {L}}\). Denote by \(V(N)\) the vertices in \(B(N)\). We shall prove the above differential inequalities in \(B(N)\), and then take \(N\rightarrow \infty \).

Impose periodic boundary conditions on \(B(N)\) by identifying its opposite faces. Denote this finite lattice by \({\mathbb {L}}(N)\). Denote the intersection of \({\mathbb {L}}(N)\) and \({\mathbb {L}}_0\) by \({\mathbb {L}}_0(N)\). Denote the set of edges in \({\mathbb {L}}_0(N)\) by \({\mathbb {E}}_0(N)\) and the set of edges in \({\mathbb {L}}(N)\) by \({\mathbb {E}}(N)\).

As before, edges in \({\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)\) are open with the bulk probability \(p\), and edges in \({\mathbb {E}}_0(N)\) are open with surface probability \(\sigma \).

The open cluster in \({\mathbb {L}}(N)\) at the vertex \(x\) is \(C_N(x)\), and the open cluster at the origin is \(C_N(0) \equiv C_N\). For \(y\in V(N)\), define the susceptibility \(\chi _N^I (p,\sigma ;y) = E^I_{p,\sigma } |C_N(y)| \).

Introduce the ghost vertex \(g\) and edges \({{\mathbb {E}}_g (N) = \{g{\sim }x|\, x\in V(N)\}}\). Edges in \({\mathbb {E}}_g(N)\) are open with probability \(\gamma \in (0,1)\). Define \(G_N\) to be the collection of vertices in \({\mathbb {L}}(N)\) adjacent to \(g\) through open edges in \({\mathbb {E}}_g(N)\).

For inhomogeneous percolation on \({\mathbb {E}}(N) \cup {\mathbb {E}}_g(N)\) with parameters \((p,\sigma ,\gamma )\), let \(P^I_{p,\sigma ,\gamma }\) and \(E^I_{p,\sigma ,\gamma }\) be the corresponding probability measure and expectation. For \(y\in {\mathbb {L}}(N)\), we define the associated quantities

$$\begin{aligned} \theta ^I_N(p,\sigma ,\gamma ;y)&\;=\; P^I_{p,\sigma ,\gamma } (C_N(y)\cap G_N \not = \emptyset )\end{aligned}$$
(97)
$$\begin{aligned} \chi ^I_N(p,\sigma ,\gamma ;y)&\;=\; E^I_{p,\sigma ,\gamma } \left( |C_N (y) |{1}\!\mathrm{l}\{ C_N(y) \cap G_N = \emptyset \}\right) . \end{aligned}$$
(98)

That is, \(\theta ^I_N(p,\sigma ,\gamma ;y)\) is the probability that there is an open path from \(y\) to \(g\). Also write

$$\begin{aligned} \theta ^I_N(p,\sigma ,\gamma ) \,:=\, \theta ^I_N(p,\sigma ,\gamma ;0) \qquad \text{ and }\qquad \chi ^I_N(p,\sigma ,\gamma ) \,:=\, \chi ^I_N(p,\sigma ,\gamma ;0). \end{aligned}$$

Then \(\theta _N^I(p,\sigma ,\gamma ) = \theta _N^I(p,\sigma ,\gamma ;y)\) for all \(y \in {\mathbb {L}}_0(N)\), and similarly for \(\chi ^I_N\). We shall frequently simplify notation by leaving out the arguments when there is no risk of ambiguity, e.g. \(\theta _N^I \equiv \theta _N^I(p,\sigma ,\gamma )\). We have

$$\begin{aligned} \theta ^I_N (p,\sigma ,\gamma )&\;=\; 1 - \sum _{n=1}^\infty (1-\gamma )^n\, P^I_{p,\sigma }(|C_N| = n) \qquad \hbox {and}\\ \chi ^I_N (p,\sigma ,\gamma )&\;=\; \sum _{n=1}^\infty n\,(1-\gamma )^n P^I_{p,\sigma } (|C_N|=n). \end{aligned}$$

We immediately obtain the following analogue of Eq. (27):

$$\begin{aligned} \chi ^I_N (p,\sigma ,\gamma ) = (1-\gamma ) \frac{\partial \theta ^I_N}{\partial \gamma }. \end{aligned}$$
(99)

The functions \(\theta ^I (p,\sigma ,\gamma )\) and \(\chi ^I (p,\sigma ,\gamma )\) are defined in the usual way for the infinite lattice \({\mathbb {L}}\) with the ghost vertex \(g\) and edges \({\mathbb {E}}_g\), and with \({\mathbb {L}}_0\) as defined before:

$$\begin{aligned} \theta ^I(p,\sigma ,\gamma )&\;=\; \theta ^I(p,\sigma ,\gamma ;0)\;=\; P^I_{p,\sigma ,\gamma } (|C| = \infty ) \\ \chi ^I(p,\sigma ,\gamma )&\;=\; \chi ^I(p,\sigma ,\gamma ;0) \;=\; E^I_{p,\sigma ,\gamma }(|C|{1}\!\mathrm{l}\{C\cap G=\emptyset \}) \end{aligned}$$

where \(C\) is the cluster at the origin. Note that for \(\gamma >0\), \(C \cap G\) is not empty with probability one when \(|C|=\infty \).

The proof of the following lemma is similar to the proof for homogeneous percolation in appendix I of reference [19].

Lemma 6

For all \(\gamma \in (0,1)\) and \(p,\sigma \in (0,1)\),

$$\begin{aligned} \lim _{N\rightarrow \infty } \theta ^I_N (p,\sigma , \gamma ) \;=\; \theta ^I(p,\sigma ,\gamma ), \end{aligned}$$

and similarly,

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{\partial \theta ^I_N}{\partial p} \;=\; \frac{\partial \theta ^I}{\partial p},\quad \lim _{N\rightarrow \infty } \frac{\partial \theta ^I_N}{\partial \sigma } \;=\; \frac{\partial \theta ^I}{\partial \sigma },\,\;\hbox {and}\,\; \lim _{N\rightarrow \infty } \frac{\partial \theta ^I_N}{\partial \gamma } \;=\; \frac{\partial \theta ^I}{\partial \gamma }.\end{aligned}$$

\(\square \)

By Eqs. (27) and (99) and Lemma 6, we have

$$\begin{aligned} \lim _{N\rightarrow \infty } \chi ^I_N (p,\sigma ,\gamma ) \;=\; \chi ^I(p,\sigma ,\gamma ). \end{aligned}$$
(100)

1.1 Uniform Bounds for Vertex-Dependent Functions

Let \(P^H_{p,\gamma }\) and \(E^H_{p,\gamma }\) be the probability measure and expectation for homogeneous percolation with a ghost field. Let \(\chi _N^H(p,\gamma ) = E^H_{p,\gamma } (|C_N|{1}\!\mathrm{l}\{ C_N\cap G_N = \emptyset \})\) be the corresponding susceptibility in \(B(N)\). Also let \(\chi _N^H(p) = \chi ^H_N(p,0)\).

Proving the differential inequalities requires the following useful lemma.

Lemma 7

Assume \(p\le \sigma \) and \(y\in B(N)\). Then

  1. (a)

    \(\theta _N^I (p,\sigma ,\gamma ;y) \;\le \; \chi _N^H(p) \, \theta _N^I (p,\sigma ,\gamma )\) for every \(\gamma \in (0,1)\);

  2. (b)

    \(\chi _N^I(p,\sigma ;y) \;\le \; \chi _N^H(p) \,\chi _N^I(p,\sigma ;0)\) (where \(\chi _N^I(p,\sigma ;y):=\chi _N^I(p,\sigma ,0;y)\)).

Proof

Since \(\chi _N^H(p) \ge 1\), it is only necessary to consider the case that \(y\not \in {\mathbb {L}}_0(N)\).

(a) Suppose that \(C_N(y) \cap G_N \not = \emptyset \). Then there is an open path from \(y\) to a point of \(G_N\). This path either uses no edge of \({\mathbb {E}}_0(N)\), or there exists an open self-avoiding path \(\pi \) from \(y\) to a vertex of \(G_N\) which passes through an edge of \({\mathbb {E}}_0(N)\). In the latter case, let \(z\) be the earliest point of \(\pi \) that is an endpoint of a bond in \(\pi \cap {\mathbb {L}}_0(N)\). Then \(z\in {\mathbb {L}}_0(N)\), and the part of \(\pi \) from \(y\) to \(z\) is disjoint from the part of the path from \(z\) to a vertex of \(G_N\).

We formalize the above as follows. For given fixed \(y\) and for each \(z\in {\mathbb {L}}_0(N)\), define the events

  • \(\widetilde{A}_N\) is the event that there is an open path from \(y\) to \(G_N\) in \({\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)\);

  • \(\widetilde{D}_N(z)\) is the event that there is an open path from \(y\) to \(z\) in \({\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)\);

  • \(D^*_N(z)\) is the event that there is an open path from \(z\) to \(G_N\) in \(B(N)\).

Observe that

$$\begin{aligned} P^I_{p,\sigma ,\gamma } (\widetilde{A}_N) \;=\; P_{p,\gamma }^H(\widetilde{A}_N) \; \le \; \theta _N^I(p,p,\gamma ) \;\le \; \theta _N^I(p,\sigma ,\gamma ) \qquad \hbox {(since }p\le \sigma ). \end{aligned}$$
(101)

Using standard percolation notation, \(\widetilde{D}_N(z) \circ D^*_N(z)\) is the event that \(\widetilde{D}_N(z)\) and \(D^*_N(z)\) occur disjointly—that is, there exist two disjoint sets of open edges such that the first set guarantees occurrence of \(\widetilde{D}_N(z)\) and the second set guarantees occurrence of \(D^*_N(z)\).

We then observe that

$$\begin{aligned} \left\{ C_N(y) \cap G_N \not = \emptyset \right\} \subset \widetilde{A}_N \cup \bigcup _{z\in {\mathbb {L}}_0(N)} \left( \widetilde{D}_N(z) \circ D^*_N(z) \right) \end{aligned}$$
(102)

since occurrence of of the event \(\left\{ C_N(y) \cap G_N \not = \emptyset \right\} \) implies that either \(\widetilde{A}_N\) occurs or \(\left( \widetilde{D}_N(z) \circ D^*_N(z) \right) \) occurs for some \(z\in {\mathbb {L}}_0(N)\).

From Eqs. (102) and (101) and the BK Inequality [19], we see that

$$\begin{aligned}&P^I_{p,\sigma ,\gamma }\left( C_N(y) \cap G_N \not = \emptyset \right) \\&\;\le \; P^I_{p,\sigma ,\gamma } \left( \widetilde{A}_N \right) \;+ \sum _{z\in {\mathbb {L}}_0(N)} P^I_{p,\sigma ,\gamma }\left( \widetilde{D}_N(z) \circ D^*_N(z) \right) \\&\;\le \; \theta ^I_N (p,\sigma ,\gamma )\;+ \sum _{z\in {\mathbb {L}}_0(N)}P^I_{p,\sigma ,\gamma } ( \widetilde{D}_N(z) ) \, P^I_{p,\sigma ,\gamma } ( D^*_N(z) ) \\&\;\le \; \theta ^I_N (p,\sigma ,\gamma ) \;+ \sum _{z\in {\mathbb {L}}_0(N)} P^H_{p} ( z\in C_N(y) ) \, P^I_{p,\sigma ,\gamma } ( C_N(z) \cap G_N \not =\emptyset ) \\&\;=\; \left( 1 \;+ \sum _{z\in {\mathbb {L}}_0(N)} P^H_{p} ( z\in C_N(y) ) \right) \theta ^I_N (p,\sigma ,\gamma ) \\&\;\le \; \chi _N^H(p)\, \theta ^I_N (p,\sigma ,\gamma ). \end{aligned}$$

(b) Fix \(y\in {\mathbb {L}}(N)\setminus {\mathbb {L}}_0(N)\). Let \(\widetilde{D}_N(z)\) be defined as in part (a). For \(w\in B(N)\), let \(\left\{ y \leftrightarrow _N w \right\} \) denote the event that \(y\) and \(w\) are connected in \(B(N)\) by a path of open edges.

Similarly to the proof of part (a), we see that for each \(w\in B(N)\)

$$\begin{aligned} P^I_{p,\sigma }\left( y \leftrightarrow _N w \right)&\;\le \; P^I_{p,\sigma } \left( \widetilde{D}_N (w) \right) \; + \sum _{z\in {\mathbb {L}}_0(N)} P^I_{p,\sigma } \left( \widetilde{D}_N(z) \circ \left\{ z\leftrightarrow _N w\right\} \right) \\&\;\le \; P^I_{p,\sigma } \left( \widetilde{D}_N (w) \right) \; + \sum _{z\in {\mathbb {L}}_0(N)} P^I_{p,\sigma } \left( \widetilde{D}_N(z) \right) \, P^I_{p,\sigma } \left( \left\{ z\leftrightarrow _N w\right\} \right) \nonumber \\&\;\le \; P^H_{p} \! \left( \left\{ y \leftrightarrow _N w \right\} \right) \, + \!\!\! \sum _{z\in {\mathbb {L}}_0(N)} \! P^H_{p} \left( \left\{ y \leftrightarrow _N z \right\} \right) \,\! P^I_{p,\sigma } \left( \left\{ z\leftrightarrow _N w\right\} \right) . \nonumber \end{aligned}$$
(103)

Since \(p\le \sigma \), we have \(\chi _N^H(p) \le \chi _N^I(p,\sigma ;0) = \chi ^I_N(p,\sigma ;z)\) for every \(z\in {\mathbb {L}}_0(N)\). Using this and summing Eq. (103) over \(w\), we obtain

$$\begin{aligned}&\chi _N^I(p,\sigma ;y) \;=\; \sum _{w\in B(N)} P^I_{p,\sigma }\left( y \leftrightarrow _N w \right) \\&\;\le \; \sum _{w\in B(N)} P^H_{p} \! \left( \left\{ y \leftrightarrow _N w \right\} \right) + \sum _{w\in B(N)} \sum _{z\in {\mathbb {L}}_0(N)} P^H_{p} \left( \left\{ y \leftrightarrow _N z \right\} \right) \, P^I_{p,\sigma } \left( \left\{ z\leftrightarrow _N w\right\} \right) \\&\;=\;\chi _N^H(p) \;+ \sum _{z\in {\mathbb {L}}_0(N)} P^H_{p} \left( \left\{ y \leftrightarrow _N z \right\} \right) \, \chi _N^I(p,\sigma ;z) \\&\le \left( 1+ \sum _{z\in {\mathbb {L}}_0(N)} P^H_{p} \left( \left\{ y \leftrightarrow _N z \right\} \right) \right) \chi _N^I(p,\sigma ;0) \;\le \; \chi _N^H (p)\,\chi ^I_N(p,\sigma ;0). \end{aligned}$$

This completes the proof. \(\square \)

1.2 The First Differential Inequality

The first differential inequality is defined in terms of \(\theta _N^I \equiv \theta ^I_N(p,\sigma ,\gamma )\) as follows.

Lemma 8

For \(p,\sigma ,\gamma \in (0,1)\), let \(\mathbf {p} = (p,\sigma )\) and \(\nabla \equiv \left( \frac{\partial }{\partial p}, \frac{\partial }{\partial \sigma }\right) \). Define \(\mathbf {q} = \mathbf {1}-\mathbf {p} = (1-p,1-\sigma )\). If \(p \le \sigma \), then we have

$$\begin{aligned} \mathbf {q} \cdot \nabla \theta _N^I \;\le \; 2d\, \chi ^H_N(p)\, (1-\gamma ) \,\theta ^I_N\,\frac{\partial \theta _N^I}{\partial \gamma }. \end{aligned}$$

Proof

The proof is similar to the proof for homogeneous percolation (see for example reference [19]) and proceeds by applying Russo’s formula to the event \(\{ C_N \cap G_N \not = \emptyset \}\), conditioned on \(G_N\).

Let \(\Gamma \) be a realisation of \(G_N\), i.e. a subset of vertices of \(B(N)\). The event \(A_N (\Gamma ) = \{ C_N \cap \Gamma \not =\emptyset \}\) is increasing. Hence by Russo’s formula [19],

$$\begin{aligned} \frac{\partial }{\partial p} P_{p,\sigma }^I (A_N(\Gamma ))&\;=\; \sum _{e\in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)} P_{p,\sigma }^I (e\hbox { is pivotal for }A_N(\Gamma )), \end{aligned}$$
(104)
$$\begin{aligned} \frac{\partial }{\partial \sigma } P_{p,\sigma }^I (A_N(\Gamma ))&\;=\; \sum _{e\in {\mathbb {E}}_0(N)} P_{p,\sigma }^I (e\hbox { is pivotal for }A_N(\Gamma )). \end{aligned}$$
(105)

First consider Eq. (104). An edge \(e=x{\sim }y\) is pivotal for \(A_N (\Gamma )\) if and only if the following all occur in \({\mathbb {E}}(N) \setminus \{e\}\): (1) there is no open path from the origin to \(\Gamma \), (2) exactly one of \(x\) and \(y\) is joined to the origin by an open path, and (3) the other vertex is joined to a vertex of \(\Gamma \) by an open path. Hence,

$$\begin{aligned}&(1-p)\frac{\partial }{\partial p} P_{p,\sigma }^I (A_N(\Gamma )) \\ \;=\;&\sum _{e\in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)} P_{p,\sigma }^I (e\hbox { is closed}) P_{p,\sigma }^I (e\hbox { is pivotal for }A_N(\Gamma )) \\ \;=\;&\sum _{x{\sim }y\in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)} P_{p,\sigma }^I (x\in C_N, C_N \cap \Gamma = \emptyset , C_N(y)\cap \Gamma \not =\emptyset ), \end{aligned}$$

where the last summation is over all ordered pairs \((x,y)\) of vertices such that the (undirected) edge \(x{\sim }y\) is in \({\mathbb {E}}(N) \setminus {\mathbb {E}}_0(N)\). Put \(q=1-p\) and average the left hand side of the above over \(\Gamma \):

$$\begin{aligned}&q \sum _{\Gamma } P_{p,\sigma ,\gamma }^I (G_N = \Gamma )\, \frac{\partial }{\partial p} P_{p,\sigma }^I (A_N(\Gamma )) \\&\quad = q\frac{\partial }{\partial p} \left[ \sum _{\Gamma } P_{p,\sigma ,\gamma }^I(C_N \cap \Gamma \not =\emptyset )\, P_{p,\sigma ,\gamma }^I(G_N=\Gamma ) \right] \\&\quad = q\frac{\partial }{\partial p} P_{p,\sigma ,\gamma }^I(C_N \cap G_N \not =\emptyset ) \\&\quad = q\frac{\partial }{\partial p} \theta _N^I(p,\sigma ,\gamma ). \end{aligned}$$

Here it is important that the sum over \(\Gamma \) has a finite number of terms.

This shows that

$$\begin{aligned} q\frac{\partial }{\partial p} \theta _N^I&\;=\; \sum _{x{\sim }y\in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)}P_{p,\sigma ,\gamma }^I (x\in C_N, C_N \cap G_N = \emptyset , C_N(y)\cap G_N \not =\emptyset ). \end{aligned}$$

Observe that \(C_N\) and \(C_N(y)\) must be disjoint on the right hand side.

Exactly the same set of arguments applied to Eq. (105) gives (with \(\tau = 1-\sigma \))

$$\begin{aligned} \tau \frac{\partial }{\partial \sigma } \theta _N^I \;=\;\sum _{x{\sim }y\in {\mathbb {E}}_0(N)} P_{p,\sigma ,\gamma }^I (x\in C_N, C_N\cap G_N = \emptyset , C_N(y)\cap G_N \not =\emptyset ). \end{aligned}$$
(106)

Adding the last two equations together then produces

$$\begin{aligned} \mathbf {q} \cdot \nabla \theta _N^I\;=\; \sum _{x{\sim }y\in {\mathbb {E}}(N)} P_{p,\sigma ,\gamma }^I(x\in C_N, C_N \cap G_N = \emptyset , C_N(y)\cap G_N \not =\emptyset ). \end{aligned}$$
(107)

The right hand side of Eq. (107) must be bounded next. This is done by conditioning on the cluster at the origin. The last equation becomes

$$\begin{aligned}&\mathbf {q} \cdot \nabla \theta _N^I\\&\;=\; \sum _{x{\sim }y}\left[ \sum _{\Xi }P_{p,\sigma }^I(C_N = \Xi )\,P_{p,\sigma ,\gamma }^I(C_N \cap G_N = \emptyset , C_N(y)\cap G_N \not =\emptyset {\,\biggr |\,}C_N = \Xi )\right] \nonumber \end{aligned}$$
(108)

where the outer sum is over ordered pairs \((x,y)\) such that \(x{\sim }y\in {\mathbb {E}}(N)\), and the inner sum is over all connected graphs \(\Xi \) containing \(\{0,x\}\) and not containing \(y\).

Conditioned on \(C_N=\Xi \), the events \(C_N \cap G_N = \emptyset \) and \(C_N(y)\cap G_N \not =\emptyset \) are independent (the first depends only on vertices of \(\Xi \), and the second depends only on vertices and edges outside \(\Xi \)). Hence

$$\begin{aligned}&P_{p,\sigma ,\gamma }^I \left( C_N \cap G_N = \emptyset ,C_N(y)\cap G_N \not =\emptyset {\,\biggr |\,}C_N = \Xi \right) \\&\qquad \;=\; P_{p,\sigma ,\gamma }^I\biggl (C_N \cap G_N = \emptyset {\,\biggr |\,}C_N = \Xi \biggr ) \,P_{p,\sigma ,\gamma }^I \biggr (C_N(y) \cap G_N \not =\emptyset {\,\biggr |\,}C_N = \Xi \biggr ). \end{aligned}$$

The condition \(C_N = \Xi \) in the last factor restricts the set of possible open paths from \(y\) to a vertex in \(G_N\) (since \(y\not \in C_N\)). Hence

$$\begin{aligned} P_{p,\sigma ,\gamma }^I (C_N(y) \cap G_N \not =\emptyset \big | C_N = \Xi ) \;\le \; P_{p,\sigma ,\gamma }^I (C_N(y) \cap G_N \not =\emptyset ) \;=\; \theta _N^I(p,\sigma ,\gamma ; y). \end{aligned}$$

This shows that

$$\begin{aligned}&\mathbf {q} \cdot \nabla \theta _N^I\nonumber \\&\quad \le \; \sum _{x{\sim }y}\left[ \sum _{\Xi }P_{p,\sigma }^I(C_N = \Xi )\, P_{p,\sigma ,\gamma }^I (C_N \cap G_N = \emptyset | C_N = \Xi )\, \theta _N^I(p,\sigma ,\gamma ; y) \right] \nonumber \\&\quad =\; \sum _{x{\sim }y}\left[ P_{p,\sigma ,\gamma }^I (x\in C_N, y\not \in C_N, C_N \cap G_N = \emptyset ) \, \theta _N^I(p,\sigma ,\gamma ; y) \right] \nonumber \\&\quad \le \; \chi ^H_N(p)\,\theta _N^I(p,\sigma ,\gamma ) \sum _{x{\sim } y} P_{p,\sigma ,\gamma }^I (x\in C_N, y\not \in C_N, C_N \cap G_N = \emptyset ) \end{aligned}$$
(109)

where the final inequality comes from Lemma 7(a). It remains to bound the last summation.

$$\begin{aligned}&\sum _{x{\sim } y}P_{p,\sigma ,\gamma }^I (x\in C_N, y\not \in C_N,C_N \cap G_N = \emptyset )\\&\quad \le 2d \sum _{x} P_{p,\sigma ,\gamma }^I (x\in C_N, C_N \cap G_N = \emptyset ) \\&\quad = 2d\, E_{p,\sigma ,\gamma }^I \left( \left| C_N \right| \,{1}\!\mathrm{l}\{C_N \cap G_N = \emptyset \} \right) \\&\quad = 2d\, \chi _N^I(p,\sigma ,\gamma ) = 2d\,(1-\gamma ) \frac{\partial \theta _N^I}{\partial \gamma } \end{aligned}$$

by Eqs. (98) and (99). Putting this all together then gives the desired inequality. \(\square \)

1.3 The Second Differential Inequality

The second differential inequality is the following (again writing \(\theta _N^I\) for \(\theta _N^I(p,\sigma ,\gamma )\)).

Lemma 9

For \(p,\sigma ,\gamma \in (0,1)\) let \(\mathbf {p} = (p,\sigma )\) and \(\nabla \equiv \left( \frac{\partial }{\partial p}, \frac{\partial }{\partial \sigma }\right) \). If \(p \le \sigma \), then

$$\begin{aligned} \theta _N^I \;\le \; \gamma \, \frac{\partial \theta _N^I}{\partial \gamma } + \left( \theta _N^I\right) ^2 + \chi _N^H(p)\, \theta _N^I \left( \mathbf {p}\cdot \nabla \theta _N^I \right) . \end{aligned}$$

Proof

Observe that

$$\begin{aligned} \theta _N^I(p,\sigma ,\gamma )\;=\;&P_{p,\sigma ,\gamma }^I(C_N \cap G_N \not =\emptyset ) \nonumber \\ \;=\;&P_{p,\sigma ,\gamma }^I(\left| C_N \cap G_N \right| = 1)+ P_{p,\sigma ,\gamma }^I(\left| C_N \cap G_N \right| \ge 2). \end{aligned}$$
(110)

The first term in Eq. (110) can calculated:

$$\begin{aligned} P_{p,\sigma ,\gamma }^I(\left| C_N \cap G_N \right| = 1)\;=\;&\sum _{n=1}^\infty n\gamma (1-\gamma )^{n-1}\,P_{p,\sigma ,\gamma }^I(\left| C_N \right| =n) \nonumber \\ \;=\;&\frac{\gamma \,\chi _N^I(p,\sigma ,\gamma )}{1-\gamma } \nonumber \\ \;=\;&\gamma \, \frac{\partial \theta _N^I}{\partial \gamma } \end{aligned}$$
(111)

by Eq. (99).

It remains to bound the second term in (110). Define the event

$$\begin{aligned} A_x \;=\; \{ x\in G_N\hbox { or }x\hbox { is joined to }G_N\hbox { by an open path} \}. \end{aligned}$$

Then \(A_x \circ A_x\) is the event that there exist two distinct vertices \(v_1\) and \(v_2\) in \(G_N\) and two edge-disjoint open paths joining these vertices to \(x\). If \(x\in G_N\), then one these paths may be the singleton \(x\).

It follows that

$$\begin{aligned} P_{p,\sigma ,\gamma }^I (\left| C_N \cap G_N \right| \ge 2)&= P_{p,\sigma ,\gamma }^I (A_0\circ A_0) \\&+\, P_{p,\sigma ,\gamma }^I (\left| C_N \cap G_N \right| \;\ge \; 2,\hbox { and }A_0\circ A_0\hbox { does not occur}). \nonumber \end{aligned}$$
(112)

By the BK inequality,

$$\begin{aligned} P_{p,\sigma ,\gamma }^I (A_0\circ A_0) \;\le \;\left( P_{p,\sigma ,\gamma }^I (A_0) \right) ^2 \;=\; \left( \theta _N^I(p,\sigma ,\gamma )\right) ^2. \end{aligned}$$
(113)

The remaining term is the probability that \(\left| C_N \cap G_N \right| \ge 2\) but there do not exist two edge-disjoint paths from the origin to distinct vertices in \(G_N\). If this occurs, then there exists an edge \(x{\sim }y\) in \({\mathbb {E}}(N)\) with the following properties:

  • \(x{\sim }y\) is open;

  • If \(x{\sim }y\) is deleted in \({\mathbb {L}}(N)\), then three events occur:

    1. 1.

      there is no open path from the origin to a vertex of \(G_N\);

    2. 2.

      \(x\) is joined to the origin by an open path;

    3. 3.

      the event \(A_y\circ A_y\) occurs.

The probability that a particular edge \(x{\sim }y\) has these properties is

$$\begin{aligned} pq^{-1}\, P_{p,\sigma ,\gamma }^I(x{\sim }y\hbox { is closed, }x\in C_N, C_N\cap G_N =\emptyset , A_y\circ A_y) \end{aligned}$$

if \(x{\sim }y \in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)\); if \(x{\sim }y \in {\mathbb {E}}_0(N)\), then we get the above expression with \(\sigma (1-\sigma )^{-1}\) instead of \(pq^{-1}\). Therefore we obtain the bound

$$\begin{aligned} P_{p,\sigma ,\gamma }^I (\left| C_N \cap G_N \right| \;\ge \; 2,\hbox { and } A_0\circ A_0\hbox { does not occur}) \;\le \; S_1\,+\,S_2, \end{aligned}$$

where

$$\begin{aligned} S_1 \,=\, pq^{-1}\, \sum _{x{\sim }y\in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)}P_{p,\sigma ,\gamma }^I(x\in C_N, C_N\cap G_N =\emptyset , A_y\circ A_y) \end{aligned}$$
(114)
$$\begin{aligned} \text{ and }\qquad S_2 \,=\,\sigma \tau ^{-1}\, \sum _{x{\sim }y\in {\mathbb {E}}_0(N)}P_{p,\sigma ,\gamma }^I(x\in C_N, C_N\cap G_N =\emptyset , A_y\circ A_y), \end{aligned}$$
(115)

writing \(\tau = 1-\sigma \).

Consider a summand from Eq. (114) and (115) conditioned on \(C_N=\Xi \), with \(x\in \Xi \) and \(y\not \in \Xi \). Using conditional independence of the events \(A_y\) and \(\{ C_N \cap G_N = \emptyset \}\), and the BK inequality, we obtain

$$\begin{aligned} P_{p,\sigma ,\gamma }^I&\left( x\in C_N, C_N\cap G_N =\emptyset , A_y\circ A_y{\,\biggr |\,}C_N=\Xi \right) \\&\;=\; P_{p,\sigma ,\gamma }^I\left( C_N\cap G_N =\emptyset {\,\biggr |\,}C_N=\Xi \right) \, P_{p,\sigma ,\gamma }^I\left( A_y\circ A_y{\,\biggr |\,}C_N=\Xi \right) \\&\;\le \; P_{p,\sigma ,\gamma }^I\left( C_N\cap G_N =\emptyset {\,\biggr |\,}C_N=\Xi \right) \,\left( P_{p,\sigma ,\gamma }^I (A_y {\,\biggr |\,}C_N=\Xi ) \right) ^2 \\&\;\le \; P_{p,\sigma ,\gamma }^I \left( C_N\cap G_N =\emptyset {\,\biggr |\,}C_N=\Xi \right) \,P_{p,\sigma ,\gamma }^I \left( A_y {\,\biggr |\,}C_N=\Xi \right) \,P_{p,\sigma ,\gamma }^I (A_y) \\&\;=\; P_{p,\sigma ,\gamma }^I\left( C_N\cap G_N =\emptyset , A_y{\,\biggr |\,}C_N=\Xi \right) \,\theta _N^I(p,\sigma ,\gamma ;y). \end{aligned}$$

Substitute this into Eq. (114) and average over \(\Xi \). This gives the upper bound

$$\begin{aligned} S_1 \;\le \;pq^{-1}\, \sum _{x{\sim }y \in {\mathbb {E}}(N)\setminus {\mathbb {E}}_0(N)}P_{p,\sigma ,\gamma }^I\left( x\in C_N, C_N\cap G_N =\emptyset , A_y\right) \,\theta _N^I(p,\sigma ,\gamma ;y). \end{aligned}$$

Next, by Eq. (106) and Lemma 7(a), we obtain (with \(\theta _N^I(p,\sigma ,\gamma )\equiv \theta _N^I\))

$$\begin{aligned} S_1 \;\le \; pq^{-1}\, \left( q\, \frac{\partial \theta _N^I }{\partial p}\right) \, \chi _N^H(p) \, \theta _N^I. \end{aligned}$$

The analogous bound for Eq. (115) is

$$\begin{aligned} S_2 \;\le \; \sigma \tau ^{-1}\, \left( \tau \, \frac{\partial \theta _N^I }{\partial \sigma } \right) \, \chi _N^H(p) \, \theta _N^I. \end{aligned}$$

Hence,

$$\begin{aligned} P_{p,\sigma ,\gamma }^I&(\left| C_N \cap G_N \right| \ge 2, \hbox { and } A_0\circ A_0\hbox { does not occur}) \\&\;\le \; \left( p \,\frac{\partial \theta _N^I }{\partial p} + \sigma \,\frac{\partial \theta _N^I }{\partial \sigma } \right) \, \chi _N^H(p) \, \theta _N^I. \end{aligned}$$

Putting this together with Eqs. (110), (112), (111) and (113) completes the proof of the desired inequality. \(\square \)

1.4 The Final Differential Inequalities

To complete the proof of the two differential inequalities (29) and (30), we take the \(N\rightarrow \infty \) limit in Lemmas 8 and 9. Using Lemma 6 and Eq. (100), the result is the following theorem.

Theorem 8

For \(p,\sigma ,\gamma \in (0,1)\), write \(\mathbf {p} = (p,\sigma )\), \(\nabla \equiv \left( \frac{\partial }{\partial p}, \frac{\partial }{\partial \sigma }\right) \), \(\mathbf {q} = \mathbf {1}-\mathbf {p} = (1{-}p,1{-}\sigma )\), and \(\theta ^I \equiv \theta ^I(p,\sigma ,\gamma )\). If \(p \le \sigma \), then

$$\begin{aligned} \mathbf {q} \cdot \nabla \theta ^I \;\;&\le \;\; 2d\, (1-\gamma ) \,\chi ^H(p)\, \theta ^I \,\frac{\partial \theta ^I}{\partial \gamma } \qquad \qquad \hbox {and} \\ \theta ^I&\le \;\; \gamma \, \frac{\partial \theta ^I}{\partial \gamma }+ \left( \theta ^I\right) ^2+ \chi ^H(p)\, \theta ^I\left( \mathbf {p}\cdot \nabla \theta ^I \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, G.K., Janse van Rensburg, E.J. & Madras, N. Phase Diagram of Inhomogeneous Percolation with a Defect Plane. J Stat Phys 158, 255–299 (2015). https://doi.org/10.1007/s10955-014-1125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1125-5

Keywords

Mathematics Subject Classification

Navigation