Skip to main content
Log in

Hamiltonian and Lagrangian for the Trajectory of the Empirical Distribution and the Empirical Measure of Markov Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compute the Hamiltonian and Lagrangian associated to the large deviations of the trajectory of the empirical distribution for independent Markov processes, and of the empirical measure for translation invariant interacting Markov processes. We treat both the case of jump processes (continuous-time Markov chains and interacting particle systems) as well as diffusion processes. For diffusion processes, the Lagrangian is a quadratic form of the deviation of the trajectory from the solution of the Kolmogorov forward equation. In all cases, the Lagrangian can be interpreted as a relative entropy or relative entropy density per unit time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Duality for stochastic models of transport. J. Stat. Phys. 152, 657–697 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Dai Pra, P., Roelly, S., Zessin, H.: A Gibbs variational principle in space-time for infinite-dimensional diffusions. Probab. Theory Relat. Fields 122, 289–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dawson, D.A., Gärtner, J.: Large deviations from the Mckean–Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. van Enter, A.C.D., Fernández, R., den Hollander, F., Redig, F.: Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Commun. Math. Phys. 226, 101–130 (2002)

    Article  MATH  ADS  Google Scholar 

  6. van Enter, A.C.D., Fernández, R., den Hollander, F., Redig, F.: A large-deviation view on dynamical Gibbs-non-Gibbs transitions. Mosc. Math. J. 10, 687–711 (2010)

    MATH  MathSciNet  Google Scholar 

  7. van Enter, A.C.D., Külske, C., Opoku, A.A., Ruszel, W.M.: Gibbs-non-Gibbs properties for \(n\)-vector lattice and mean field models (2008, preprint). arxiv:0812.1751

  8. Feng, J., Kurtz, T.G.: Large Deviations for Stochastic Processes. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  9. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27, 65–74 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. Fernández, R., den Hollander, F., Martinez, J.: Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model. Commun. Math. Phys. 319, 703–730 (2013)

    Article  MATH  ADS  Google Scholar 

  11. Jahnel, B., Kuelske, C.: Synchronization for discrete mean-field rotators. Electron. J. Probab. Volume 19, Article 14 (2014)

  12. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  13. Kipnis, C., Olla, S.: Large deviation from the hydrodynamic limit for a system of independent Brownian particles. Stoch. Stoch. Rep. 33, 17–25 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kraaij, R.: Large deviations of the trajectory of empirical distributions of Markov processes, preprint available at processes (2014, preprint). arxiv:1401.2802

  15. Kraaij, R., Redig, F.: Large deviations of the trajectory of the empirical measure of locally interacting Markov processes (2014, preprint)

  16. Külske, C., Ermolaev, V.: Low-temperature dynamics of the Curie-Weiss model: periodic orbits, multiple histories, and loss of Gibbsianness. J. Stat. Phys. 141, 727–756 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Külske, C., Le Ny, A.: Spin-flip dynamics of the Curie–Weiss model: loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys. 271, 431–545 (2007)

    Article  MATH  ADS  Google Scholar 

  18. Külske, C., Redig, F.: Loss without recovery of Gibbsianness during diffusion of continuous spins. Probab. Theory Relat. Fields 135, 428–456 (2006)

    Article  MATH  Google Scholar 

  19. Maes, C., Redig, F.: Anisotropic perturbations of the simple symmetric exclusion process: long range correlations. J. Phys. I(5), 669–684 (1991)

    MathSciNet  Google Scholar 

  20. Mielke, A., Renger, D.R.M., Peletier, M.A.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion (2013, preprint). arxiv:1312.7591

  21. Pfister, C.E.: Thermodynamical aspects of classical lattice systems in and out of equilibrium. Progr. Probab. 51, 393–472 (2002)

    MathSciNet  Google Scholar 

  22. Redig, F., Wang, F.: Gibbs-non-Gibbs transitions via large deviations: computable examples. J. Stat. Phys. 147, 1094–1112 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Liggett, T.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Redig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redig, F., Wang, F. Hamiltonian and Lagrangian for the Trajectory of the Empirical Distribution and the Empirical Measure of Markov Processes. J Stat Phys 157, 182–204 (2014). https://doi.org/10.1007/s10955-014-1063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1063-2

Keywords

Navigation