Skip to main content
Log in

The Influence of Human Heterogeneity to Information Spreading

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Humans are an integral part of the wide world and material areas, and morphological difference is widespread. In this paper, we propose a model to emphasize the influence of human heterogeneity to information spreading on social networks, and the properties including memory effects, social reinforcement, non-redundancy and human heterogeneity are taken into account. Simulation results indicate that the small-world networks generate the most effective spreading for the stronger human heterogeneity; however, for the weaker human heterogeneity, the regular networks will be more effective. In addition, for a given BA scale-free network, the stronger human heterogeneity will be more conducive to information spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilligan, T.W., Krehbiel, K.: Asymmetric information and legislative rules with a heterogeneous committee. Am. J. Polit. Sci. 33, 459–490 (1989)

    Article  Google Scholar 

  2. Barsky, R.B., Kimball, M.S., Juster, F.T., Shapio, M.D.: Preference parameters and behavioral heterogeneity: an experimental approach in the health and retirement survey. Q. J. Econ. 112, 537–579 (1997)

    Article  Google Scholar 

  3. Deng, Y., Quigley, J.M., Van, R.: Mortgage terminations, heterogeneity and the exercise of mortgage options. Econometrica 68, 275–307 (2000)

    Article  Google Scholar 

  4. Bowles, S., Gintis, H.: The evolution of strong reciprocity: cooperation in heterogeneous populations. Theor. Popul. Biol. 65, 17–28 (2004)

    Article  MATH  Google Scholar 

  5. Frey, B.S., Meier, S.: Social comparisons and pro-social behavior: testing “conditional cooperation” in a field experiment. Am. Econ. Rev. 94, 1717–1722 (2004)

    Article  Google Scholar 

  6. Bénabou, R., Tirole, J.: Incentives and prosocial behavior. Am. Econ. Rev. 96, 1652–1678 (2006)

    Article  Google Scholar 

  7. Hommes, C.H.: Chapter 23 heterogeneous agent models in economics and finance. In: Tesfatsion, L., Judd, K.L. (eds.) Handbook of Computational Economics, vol. 2, pp. 1109–1186. Elsevier, North Holland (2006)

    Google Scholar 

  8. Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004)

    Article  ADS  Google Scholar 

  9. Medo, M., Zhang, Y.C., Zhou, T.: Adaptive model for recommendation of news. Eur. Phys. Lett. 88, 38005 (2009)

    Article  ADS  Google Scholar 

  10. Cimini, G., Medo, M., Zhou, T., Wei, D., Zhang, Y.C.: Heterogeneity, quality, and reputation in an adaptive recommendation model. Eur. Phys. J. B 80, 201–208 (2011)

    Article  ADS  Google Scholar 

  11. Wei, D., Zhou, T., Cimini, G., Wu, P., Liu, W., Zhang, Y.C.: Effective mechanism for social recommendation of news. Phys. A 390, 2117–2126 (2011)

    Article  Google Scholar 

  12. Prapivsky, P.L., Redner, S., Volovik, D.: Reinforcement-driven spread of innovations and fads. J. Stat. Mech. 2011, p12003 (2011)

    Article  Google Scholar 

  13. Lü, L.Y., Chen, D.B., Zhou, T.: The small world yields the most effective information spreading. New J. Phys. 13, 123005 (2011)

    Article  Google Scholar 

  14. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  15. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Phys. Rev. E 72, 056128 (2005)

    Article  ADS  Google Scholar 

  16. Zhou, T., Fu, Z.Q., Wang, B.H.: Epidemic dynamics on complex networks. Prog. Nat. Sci. 16, 452–457 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zanette, D.H.: Critical behavior of propagation on small-world networks. Phys. Rev. E 64, 050901 (2001)

    Article  ADS  Google Scholar 

  18. Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010)

    Article  ADS  Google Scholar 

  19. Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

    Article  ADS  Google Scholar 

  20. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A 281, 69–77 (2000)

    Article  Google Scholar 

  21. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A 311, 590–614 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104, 7332–7336 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China under Grant Nos. 11271006, 11201440 and Shandong Provincial Natural Science Foundation of China under Grant No. ZR2012GQ002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Liang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, ZQ., Liu, CJ., Wu, JL. et al. The Influence of Human Heterogeneity to Information Spreading. J Stat Phys 154, 1569–1577 (2014). https://doi.org/10.1007/s10955-014-0924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0924-z

Keywords

Navigation