Skip to main content
Log in

Rate of Mutual Information Between Coarse-Grained Non-Markovian Variables

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The problem of calculating the rate of mutual information between two coarse-grained variables that together specify a continuous time Markov process is addressed. As a main obstacle, the coarse-grained variables are in general non-Markovian, therefore, an expression for their Shannon entropy rates in terms of the stationary probability distribution is not known. A numerical method to estimate the Shannon entropy rate of continuous time hidden-Markov processes from a single time series is developed. With this method the rate of mutual information can be determined numerically. Moreover, an analytical upper bound on the rate of mutual information is calculated for a class of Markov processes for which the transition rates have a bipartite character. Our general results are illustrated with explicit calculations for four-state networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shannon, C.E.: Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  3. Li, W.: J. Stat. Phys. 60, 823 (1990)

    Article  ADS  MATH  Google Scholar 

  4. Barato, A.C., Hartich, D., Seifert, U.: Phys. Rev. E 87, 042104 (2013)

    Article  ADS  Google Scholar 

  5. Holliday, T., Goldsmith, A., Glynn, P.: IEEE Trans. Inf. Theory 52, 3509 (2006)

    Article  MathSciNet  Google Scholar 

  6. Jacquet, P., Seroussi, G., Szpankowski, W.: Theor. Comput. Sci. 395, 203 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Roldan, E., Parrondo, J.M.R.: Phys. Rev. E 85, 031129 (2012)

    Article  ADS  Google Scholar 

  8. Seifert, U.: Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  9. Touchette, H., Lloyd, S.: Phys. Rev. Lett. 84, 1156 (2000)

    Article  ADS  Google Scholar 

  10. Cao, F.J., Feito, M.: Phys. Rev. E 79, 041118 (2009)

    Article  ADS  Google Scholar 

  11. Sagawa, T., Ueda, M.: Phys. Rev. Lett. 104, 090602 (2010)

    Article  ADS  Google Scholar 

  12. Sagawa, T., Ueda, M.: Phys. Rev. Lett. 109, 180602 (2012)

    Article  ADS  Google Scholar 

  13. Sagawa, T., Ueda, M.: Phys. Rev. E 85, 021104 (2012)

    Article  ADS  Google Scholar 

  14. Horowitz, J.M., Vaikuntanathan, S.: Phys. Rev. E 82, 061120 (2010)

    Article  ADS  Google Scholar 

  15. Horowitz, J.M., Parrondo, J.M.R.: Europhys. Lett. 95(1), 10005 (2011)

    Article  ADS  Google Scholar 

  16. Granger, L., Kantz, H.: Phys. Rev. E 84, 061110 (2011)

    Article  ADS  Google Scholar 

  17. Abreu, D., Seifert, U.: Phys. Rev. Lett. 108, 030601 (2012)

    Article  ADS  Google Scholar 

  18. Abreu, D., Seifert, U.: Europhys. Lett. 94, 10001 (2011)

    Article  ADS  Google Scholar 

  19. Bauer, M., Abreu, D., Seifert, U.: J. Phys. A, Math. Theor. 45, 162001 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. Ito, S., Sano, M.: Phys. Rev. E 84, 021123 (2011)

    Article  ADS  Google Scholar 

  21. Crisanti, A., Puglisi, A., Villamaina, D.: Phys. Rev. E 85, 061127 (2012)

    Article  ADS  Google Scholar 

  22. Mandal, D., Jarzynski, C.: Proc. Natl. Acad. Sci. USA 109, 11641 (2012)

    Article  ADS  Google Scholar 

  23. Esposito, M., Schaller, G.: Europhys. Lett. 99, 30003 (2012)

    Article  ADS  Google Scholar 

  24. Strasberg, P., Schaller, G., Brandes, T., Esposito, M.: Phys. Rev. Lett. 110, 040601 (2013)

    Article  ADS  Google Scholar 

  25. Barato, A.C., Seifert, U.: Europhys. Lett. 101, 60001 (2013)

    Article  ADS  Google Scholar 

  26. Lan, G., Sartori, P., Neumann, S., Sourjik, V., Tu, Y.: Nat. Phys. 8, 422 (2012)

    Article  Google Scholar 

  27. Mehta, P., Schwab, D.J.: Proc. Natl. Acad. Sci. USA 109, 17978 (2012)

    Article  ADS  Google Scholar 

  28. Ephraim, Y., Merhav, N.: IEEE Trans. Inf. Theory 48, 1518 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaspard, P.: J. Stat. Phys. 117, 599 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Lecomte, V., Appert-Rolland, C., Wijland, F.: J. Stat. Phys. 127, 51 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Dumitrescu, M.B.: Čas. Pěst. Mat. 113, 429 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Schnakenberg, J.: Rev. Mod. Phys. 48, 571 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  33. Kawai, R., Parrondo, J.M.R., van den Broeck, C.: Phys. Rev. Lett. 98, 080602 (2007)

    Article  ADS  Google Scholar 

  34. Rahav, S., Jarzynski, C.: J. Stat. Mech., Theor. Exp. P09012 (2007)

  35. Esposito, M.: Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  36. Crisanti, A., Paladin, G., Vulpiani, A.: Products of Random Matrices in Statistical Physics. Springer Series in Solid State Sciences (1993)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Support by the ESF through the network EPSD is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre C. Barato.

Appendix: Detailed Derivation of the Analytical Upper Bound

Appendix: Detailed Derivation of the Analytical Upper Bound

The first upper bound H(Y 2|Y 1) can be easily calculated by using the conditional probability

$$ P(Y_2|Y_1)= \frac{\sum_{X_1}P(Y_2,Y_1,X_1)}{P(Y_1)}= \frac{\sum_\alpha P_i^{\alpha}w^{\alpha}_{ij}\tau}{P_i}, $$
(68)

where Y 2Y 1. We here performed the substitutions X 1α, Y 1i, and Y 2j. Using this formula in (22) we obtain

$$\begin{aligned} H(Y_2|Y_1)=-\sum_{i,\alpha}P_i^\alpha \sum_{j\neq i}w_{ij}^\alpha \biggl(\ln \tau+\ln\frac{\sum_\beta P_i^\beta w_{ij}^\beta}{P_i}-1 \biggr)+\textrm{O}(\tau). \end{aligned}$$
(69)

Moreover, H(Y N+1|Y N ,…,Y 1) up to order τ is given by the above formula for any finite N. In order to demonstrate this we first rewrite (22) as

$$\begin{aligned} & H(Y_{N+1}|Y_{N},\ldots,Y_1) \\ &\quad = -\frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N}\sum _{Y_N\ldots Y_1}P(Y_{N+1},Y_N,\ldots,Y_1) \ln P(Y_{N+1}|Y_N,\ldots,Y_1) \\ &\qquad{} -\frac{1}{\tau}\sum_{Y_N\ldots Y_1}P(Y_{N},Y_N, \ldots,Y_1)\ln P(Y_{N}|Y_N, \ldots,Y_1), \end{aligned}$$
(70)

where P(Y N ,Y N ,…,Y 1) denotes the probability of having a sequence for which Y N+1=Y N . For Y N+1Y N , the expression of the conditional probability P(Y N+1|Y N ,…,Y 1) has at least one transition probability term of order τ. Therefore, as P(Y N+1|Y N ,…,Y 1) is at least a term of order τ, it is convenient to further rewrite the above expression as

$$\begin{aligned} & H(Y_{N+1}|Y_{N},\ldots,Y_1) \\ &\quad =- \frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N}\sum _{Y_N}P(Y_{N+1},Y_N)\ln \tau \\ &\qquad{} -\frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N}\sum _{Y_N\ldots Y_1}P(Y_{N+1},Y_N,\ldots,Y_1) \ln \frac{P(Y_{N+1}|Y_N,\ldots,Y_1)}{\tau} \\ &\qquad{} -\frac{1}{\tau}\sum_{Y_N\ldots Y_1}P(Y_{N},Y_N, \ldots,Y_1)\ln P(Y_{N}|Y_N, \ldots,Y_1), \end{aligned}$$
(71)

where in the first line we summed over the variables Y 1,…,Y N−1. The three following relations are important for the subsequent derivation. First, for Y N+1Y N ,

$$ P(Y_{N+1}, Y_N,\ldots,Y_1) = \left \{ \begin{array}{l@{\quad}l} P(Y_{N+1}, Y_N) + \textrm{O}(\tau^2) & \mathrm{if}\ Y_N= Y_{N-1}=\cdots=Y_1\\ \textrm{O}(\tau^2) & \mathrm{otherwise}. \end{array} \right . $$
(72)

Moreover,

$$ P(Y_N,\ldots,Y_1) = \left \{ \begin{array}{l@{\quad}l} P(Y_N) + \textrm{O}(\tau) & \mathrm{if}\ Y_N= Y_{N-1}=\cdots=Y_1\\ A\tau^\eta+ \textrm{O}(\tau^{\eta+1}) & \mathrm{otherwise}, \end{array} \right . $$
(73)

where η≥1 is an integer and A is a constant independent of τ. Finally, the conditional probability distribution fulfills

$$ P(Y_{N+1}| Y_N,\ldots,Y_1) = \left \{ \begin{array}{l@{\quad}l} P(Y_{N+1}|Y_N) + \textrm{O}(\tau^2) & \mathrm{if}\ Y_N= Y_{N-1}=\cdots=Y_1\\ B\tau^\nu+ \textrm{O}(\tau^{\nu+1})& \mathrm{otherwise}, \end{array} \right . $$
(74)

where ν≥1 is an integer and B is a constant independent of τ. With these three relations, the term in the second line in Eq. (71) becomes

$$\begin{aligned} & \frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N}\sum _{Y_N\ldots Y_1}P(Y_{N+1},Y_N,\ldots,Y_1) \ln \frac{P(Y_{N+1}|Y_N,\ldots,Y_1)}{\tau} \\ &\quad = \frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N}\sum _{Y_N} P(Y_{N+1},Y_N)\ln \frac{P(Y_{N+1}|Y_N)}{\tau}+\textrm{O}(\tau), \end{aligned}$$
(75)

where we used τ ν+η−1lnτ ν−1∈O(τ). For the term in the third line in Eq. (71) we need the relations,

$$ P(Y_{N}|Y_N,\ldots,Y_1)= 1-\sum _{Y_{N+1}\neq Y_{N}} P(Y_{N+1}|Y_N, \ldots,Y_1) $$
(76)

and

$$ P(Y_{N},Y_N,\ldots,Y_1)= P(Y_N, \ldots,Y_1) \biggl(1-\sum_{Y_{N+1}\neq Y_{N}} P(Y_{N+1}|Y_N,\ldots,Y_1) \biggr) $$
(77)

which lead to

$$ \frac{1}{\tau}\sum_{Y_N\ldots Y_1}P(Y_{N},Y_N, \ldots,Y_1)\ln P(Y_{N}|Y_N, \ldots,Y_1)= \frac{1}{\tau}\sum_{Y_{N+1}\neq Y_N} P(Y_{N+1},Y_{N})+\textrm{O}(\tau). $$
(78)

Inserting (75) and (78) in (71) we obtain

$$ H(Y_{N+1}|Y_{N},\ldots,Y_1)= H(Y_{N+1}|Y_{N})+ \textrm{O}(\tau). $$
(79)

Therefore, since the Y process is stationary, from (69), we obtain for any finite N

$$\begin{aligned} H(Y_{N+1}|Y_{N},\ldots,Y_1)=-\sum _{i,\alpha}P_i^\alpha\sum _{j\neq i}w_{ij}^\alpha \biggl(\ln \tau+\ln \frac{\sum_\beta P_i^\beta w_{ij}^\beta}{P_i}-1 \biggr)+\textrm{O}(\tau). \end{aligned}$$
(80)

Applying the same method to the X process we get,

$$\begin{aligned} H(X_{N+1}|X_{N},\ldots,X_1)=-\sum _{i,\alpha}P_i^\alpha\sum _{\beta\neq \alpha}w_{i}^{\alpha\beta} \biggl(\ln \tau+\ln \frac{\sum_j P_j^\alpha w_{j}^{\alpha\beta}}{P^\alpha}-1 \biggr)+\textrm{O}(\tau). \end{aligned}$$
(81)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barato, A.C., Hartich, D. & Seifert, U. Rate of Mutual Information Between Coarse-Grained Non-Markovian Variables. J Stat Phys 153, 460–478 (2013). https://doi.org/10.1007/s10955-013-0834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0834-5

Keywords

Navigation