Skip to main content
Log in

An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, R., Kovacic, G., Majda, A.J.: Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation. Commun. Pure Appl. Math. 56, 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  3. Balescu, R.: Equilibrium and Non-equilibrium Statistical Mechanics. Wiley, New York (1975)

    Google Scholar 

  4. Berdichevsky, V.L.: Structure of equations of macrophysics. Phys. Rev. E 68, 066126 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems, with Internal Microstructure. Oxford University Press, New York (1994)

    Google Scholar 

  6. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary nonequilibrium state. J. Stat. Phys. 107, 635–675 (2002)

    Article  ADS  MATH  Google Scholar 

  7. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Minimum dissipation principle in stationary nonequilibrium states. J. Stat. Phys. 116, 831–841 (2004)

    Article  ADS  MATH  Google Scholar 

  8. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135(5–6), 857–872 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bryson, A.E. Jr., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation and Control. Wiley, New York (1975)

    Google Scholar 

  10. Casella, G., Berger, R.L.: Statistical Inference. Duxbury, Belmont (1990)

    MATH  Google Scholar 

  11. Chandler, D.: Introduction to Modern Statistical Mechanics. Oxford University Press, New York (1987)

    Google Scholar 

  12. Chorin, A.J., Hald, O., Kupferman, R.: Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl. Acad. Sci. USA 97, 2968–2973 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chorin, A.J., Hald, O., Kupferman, R.: Optimal prediction with memory. Physica D 166, 239–257 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  15. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)

    Book  MATH  Google Scholar 

  16. deGroot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North Holland, Amsterdam (1962)

    Google Scholar 

  17. Dougherty, J.P.: Foundations of non-equilibrium statistical mechanics. Philos. Trans. R. Soc. Lond. A 346, 259–305 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  19. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  20. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17, 55–127 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, vol. 660. Springer, Berlin (2005)

    MATH  Google Scholar 

  22. Grmela, M.: Particle and bracket formulations of kinetic theory. Contemp. Math. 28, 125–132 (1984)

    Article  MathSciNet  Google Scholar 

  23. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  24. Jaynes, E.T.: Where do we stand on maximum entropy. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 15–118. MIT Press, Cambridge (1979)

    Google Scholar 

  25. Jaynes, E.T.: Macroscopic prediction. In: Haken, H. (ed.) Complex Systems—Operational Approaches to Neurobiology, Physics and Computers, pp. 254–269. Springer, Berlin (1985)

    Chapter  Google Scholar 

  26. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  27. Katz, A.: Principles of Statistical Mechanics. Freeman, San Francisco (1967)

    Google Scholar 

  28. Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes. Springer, New York (1987)

    Book  Google Scholar 

  29. Kleeman, R., Turkington, B.: A nonequilibrium statistical model of spectrally truncated Burgers-Hopf dynamics. Preprint, arXiv:1206.6546 (2012); Commun. Pure Appl. Math., to appear

  30. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  31. Kučera, V.: A review of the matrix Riccati equation. Kybernetika 9, 42–61 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Lanczos, C.: The Variational Principles of Mechanics, 4th edn. University of Toronto Press, Toronto (1970)

    MATH  Google Scholar 

  33. Luzzi, R., Vasconcellos, A.R., Ramos, J.G.: Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism. Kluwer Academic, Dordrecht (2002)

    Book  Google Scholar 

  34. McComb, W.D.: The Physics of Fluid Turbulence. Clarendon, Oxford (1990)

    Google Scholar 

  35. Majda, A.J., Timofeyev, I.: Remarkable statistical behavior of truncated Burgers-Hopf dynamics. Proc. Natl. Acad. Sci. USA 97, 12413–12417 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Majda, A.J., Timofeyev, I.: Statistical mechanics for truncations of the Burgers-Hopf equation: a model for intrinsic stochastic behavior with scaling. Milan J. Math. 70, 39–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: Stochastic models for selected slow variables in large deterministic systems. Nonlinearity 19, 769–794 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100, 423–427 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  39. Öttinger, H.C.: General projection operator formalism for the dynamics and thermodynamics of complex fluids. Phys. Rev. E 57, 1416–1420 (1998)

    Article  ADS  Google Scholar 

  40. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley-Interscience, Hoboken (2005)

    Book  Google Scholar 

  41. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  42. Penrose, O.: Foundations of statistical mechanics. Rep. Prog. Phys. 42, 1937–2006 (1979)

    Article  ADS  Google Scholar 

  43. Ramshaw, J.D.: Elementary derivation of nonlinear transport equations from statistical mechanics. J. Stat. Phys. 45, 983–999 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  44. Robertson, B.: Application of maximum entropy to nonequilibrium statistical mechanics. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 289–320. MIT Press, Cambridge (1979)

    Google Scholar 

  45. Vasconcellos, A.R., Luzzi, R., Garcia-Colin, L.S.: Microscopic approach to irreversible thermodynamics, I: general theory. Phys. Rev. A 43, 6622–6632 (1991)

    Article  ADS  Google Scholar 

  46. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Plenum, New York (1974)

    Google Scholar 

  47. Zubarev, D.N., Morozov, V., Röpke, G.: Statistical Mechanics of Nonequilibrium Processes, Vol. I: Basic Concepts, Kinetic Theory. Akademie Verlag, Berlin (1996)

    Google Scholar 

  48. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)

    Google Scholar 

Download references

Acknowledgements

In the course of this work the author benefited from conversations with R.S. Ellis, M. Katsoulakis, R. Kleeman, A.J. Majda, and P. Plechac. This research was initiated during a sabbatical stay at the University of Warwick partly supported by an international short visit fellowship from the Royal Society, and was completed during a two-month visit to the Courant Institute of Mathematical Sciences. This work received funding from the National Science Foundation under grant DMS-0604071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Turkington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkington, B. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics. J Stat Phys 152, 569–597 (2013). https://doi.org/10.1007/s10955-013-0778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0778-9

Keywords

Navigation