Skip to main content
Log in

Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of deriving approximate autonomous dynamics for a number of variables of a dynamical system, which are weakly coupled to the remaining variables. In a previous paper we have used the Ruelle response theory on such a weakly coupled system to construct a surrogate dynamics, such that the expectation value of any observable agrees, up to second order in the coupling strength, to its expectation evaluated on the full dynamics. We show here that such surrogate dynamics agree up to second order to an expansion of the Mori-Zwanzig projected dynamics. This implies that the parametrizations of unresolved processes suited for prediction and for the representation of long term statistical properties are closely related, if one takes into account, in addition to the widely adopted stochastic forcing, the often neglected memory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fatkullin, I., Vanden-Eijnden, E.: J. Comput. Phys. 200(2), 605 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arnold, L.: In: Stochastic Climate Models, vol. 49, p. 141 (2001)

    Chapter  Google Scholar 

  3. Kifer, Y.: In: Modern Dynamical Systems and Applications: Dedicated to Anatole Katok on His 60th Birthday, p. 385 (2004)

    Google Scholar 

  4. Pavliotis, G., Stuart, A.: Multiscale Methods. Texts in Applied Mathematics. Springer, New York (2008)

    MATH  Google Scholar 

  5. Abramov, R.V.: Commun. Math. Sci. 10(2), 595 (2012)

    MathSciNet  Google Scholar 

  6. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, London (2001)

    Google Scholar 

  7. Wouters, J., Lucarini, V.: J. Stat. Mech. Theory Exp. 2012(03), P03003 (2012)

    Article  Google Scholar 

  8. Ruelle, D.: Commun. Math. Phys. 187(1), 227 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Ruelle, D.: Nonlinearity 22(4), 855 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lucarini, V.: J. Stat. Phys. 131, 543 (2008). doi:10.1007/s10955-008-9498-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Reick, C.H.: Phys. Rev. E 66, 036103 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. Cessac, B., Sepulchre, J.A.: Physica D, Nonlinear Phenom. 225(1), 13 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Abramov, R.V., Majda, A.: J. Nonlinear Sci. 18, 303 (2008). doi:10.1007/s00332-007-9011-9

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Lucarini, V.: J. Stat. Phys. 134, 381 (2009). doi:10.1007/s10955-008-9675-z

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lucarini, V., Sarno, S.: Nonlinear Process. Geophys. 18, 7 (2011)

    Article  ADS  Google Scholar 

  16. Gallavotti, G., Cohen, E.G.D.: J. Stat. Phys. 80(5–6), 931 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Gallavotti, G.: J. Stat. Phys. 84(5–6), 899 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Gallavotti, G., Roma, F.: In: Francoise, J.P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, vol. 3, p. 530 (2006)

    Chapter  Google Scholar 

  19. Ruelle, D.: J. Stat. Phys. 95(1), 393–468 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Colangeli, M., Rondoni, L., Vulpiani, A.: J. Stat. Mech. Theory Exp. 2012(04), L04002 (2012)

    Article  Google Scholar 

  21. Lucarini, V.: arXiv:1106.1265 (2011)

  22. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  23. Orrell, D.: J. Atmos. Sci. 60(17), 2219 (2003)

    Article  ADS  Google Scholar 

  24. Wilks, D.S.: Q. J. R. Meteorol. Soc. 131(606), 389 (2005)

    Article  ADS  Google Scholar 

  25. Imkeller, P., von Storch, J.: Stochastic Climate Models. Progress in Probability, 1st edn. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  26. Hasselmann, K.: Tellus 28(6), 473 (1976)

    Article  ADS  Google Scholar 

  27. Saltzman, B.: Dynamical Paleoclimatology, Generalized Theory of Global Climate Change, 1st edn. Academic Press, San Diego (2001)

    Google Scholar 

  28. Palmer, T.N., Williams, P.: Stochastic Physics and Climate Modelling. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  29. Rodwell, M.J., Palmer, T.N.: Q. J. R. Meteorol. Soc. 133(622), 129 (2007)

    Article  ADS  Google Scholar 

  30. Palmer, T.N., Doblas-Reyes, F.J., Weisheimer, A., Rodwell, M.J.: Bull. Am. Meteorol. Soc. 89, 459 (2008)

    Article  ADS  Google Scholar 

  31. Mori, H.: Prog. Theor. Phys. 33(3), 423 (1965)

    Article  ADS  MATH  Google Scholar 

  32. Zwanzig, R.: Phys. Rev. 124(4), 983 (1961)

    Article  ADS  MATH  Google Scholar 

  33. Evans, D., Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  34. Ruelle, D.: Nonlinearity 11(1), 5 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Abramov, R.V., Majda, A.J.: Nonlinearity 20(12), 2793 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Langen, P.L., Alexeev, V.A.: Geophys. Res. Lett. 32(23), L23708 (2005)

    Article  ADS  Google Scholar 

  37. Gritsun, A., Branstator, G.: J. Atmos. Sci. 64(7), 2558 (2007)

    Article  ADS  Google Scholar 

  38. Abramov, R.V., Majda, A., Kleeman, R.: J. Atmos. Sci. 62(1), 65 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Cooper, F.C., Haynes, P.H.: J. Atmos. Sci. 68(5), 937 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Wouters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wouters, J., Lucarini, V. Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach. J Stat Phys 151, 850–860 (2013). https://doi.org/10.1007/s10955-013-0726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0726-8

Keywords

Navigation