Skip to main content
Log in

Percolation on Infinite Graphs and Isoperimetric Inequalities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the Bernoulli bond percolation process (with parameter p) on infinite graphs and we give a general criterion for bounded degree graphs to exhibit a non-trivial percolation threshold based either on a single isoperimetric inequality if the graph has a bi-infinite geodesic, or two isoperimetric inequalities if the graph has not a bi-infinite geodesic. This new criterion extends previous criteria and brings together a large class of amenable graphs (such as regular lattices) and non-amenable graphs (such trees). We also study the finite connectivity in graphs satisfying the new general criterion and show that graphs in this class with a bi-infinite geodesic always have finite connectivity functions with exponential decay when p is sufficiently close to one. On the other hand, we show that there are graphs in the same class with no bi-infinite geodesic for which the finite connectivity decays sub-exponentially (down to polynomially) in the highly supercritical phase even for p arbitrarily close to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Antunović, T., Veselić, I.: Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs. J. Stat. Phys. 130(5), 963–1009 (2008)

    ADS  Google Scholar 

  3. Babson, E., Benjamini, I.: Cut sets and normed cohomology with applications to percolation. Proc. Am. Math. Soc. 127, 589–597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartholdi, L., Woess, W.: Spectral computations on lamplighter groups and Diestel-Leader graphs. J. Fourier Anal. Appl. 11, 175–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Schramm, O.: Percolation beyond ℤd, many questions and a few answers. Electron. Commun. Probab. 1, 71–82 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campari, R., Cassi, D.: Generalization of the Peierls-Griffiths theorem for the Ising model on graphs. Phys. Rev. E 81, 021108 (2010)

    Article  ADS  Google Scholar 

  7. Chen, D., Peres, Y., Pete, G.: Anchored expansion, percolation and speed. Ann. Probab. 32, 2978–2995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chayes, J.T., Chayes, L.: Critical points and intermediate phases on wedges of ℤd. J. Phys. A, Math. Gen. 19, 3033–3048 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chayes, J.T., Chayes, L., Grimmett, G.R., Kesten, H., Schonmann, R.H.: The correlation length for the high-density phase of Bernoulli percolation. Ann. Probab. 17(4), 1277–1302 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chayes, J.T., Chayes, L., Newman, C.M.: Bernoulli percolation above threshold: an invasion percolation analysis. Ann. Probab. 15(4), 1272–1287 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diekert, V., Weiß, A.: Context-free groups and their structure trees. arXiv:1202.3276

  12. Gandolfo, D., Ruiz, J., Shlosman, S.: A manifold of pure Gibbs states of the Ising model on a Cayley tree. Preprint. arXiv:1207.0983. J. Stat. Phys. (to appear)

  13. Grimmett, G.: Percolation, 2nd edn. Springer, New York (1999)

    MATH  Google Scholar 

  14. Grimmett, G.: Critical sponge dimensions in percolation theory. Adv. Appl. Probab. 13(2), 314–324 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Häggström, O.: Percolation beyond ℤd: the contributions of Oded Schramm. Ann. Probab. 39(5), 1668–1701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Häggström, O., Peres, Y., Schonmann, R.H.: Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness. In: Bramson, M., Durrett, R. (eds.) Perplexing Probability Problems: Papers in Honor of Harry Kesten, pp. 53–67. Birkhäuser, Boston (1999). MR1703125

    Google Scholar 

  17. Mohar, B.: Some relations between analytic and geometric properties of infinite graphs. Discrete Math. 95, 193–219 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Procacci, A., Scoppola, B.: Infinite graphs with a nontrivial bond percolation threshold: some sufficient conditions. J. Stat. Phys. 115(3/4), 1113–1127 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Procacci, A., Scoppola, B.: Convergent expansions for random cluster model with q>0 on infinite graphs. Commun. Pure Appl. Anal. 7(5), 1145–1178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rozikov, U.A.: A contour method on Cayley trees. J. Stat. Phys. 130(4), 801–813 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Schonmann, R.H.: Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Commun. Math. Phys. 219(2), 271–322 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Thomassen, C., Woess, W.: Vertex-transitive graphs and accessibility. J. Comb. Theory, Ser. B 58(2), 248–268 (1991)

    Article  MathSciNet  Google Scholar 

  23. Timár, A.: Cutsets in infinite graphs. Comb. Probab. Comput. 16, 159–166 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thanks two anonymous referees who helped us, with their remarks and criticisms, to improve the presentation of the paper. We are also grateful to Yuval Peres for pointing out formula (A.3) in Ref. [7]. A.P. and R.S. have been partially supported by CNPq and FAPEMIG (Programa de Pesquisador Mineiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Procacci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, R.G., Procacci, A. & Sanchis, R. Percolation on Infinite Graphs and Isoperimetric Inequalities. J Stat Phys 149, 831–845 (2012). https://doi.org/10.1007/s10955-012-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0644-1

Keywords

Navigation