Skip to main content
Log in

Full Connectivity: Corners, Edges and Faces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a cluster expansion for the probability of full connectivity of high density random networks in confined geometries. In contrast to percolation phenomena at lower densities, boundary effects, which have previously been largely neglected, are not only relevant but dominant. We derive general analytical formulas that show a persistence of universality in a different form to percolation theory, and provide numerical confirmation. We also demonstrate the simplicity of our approach in three simple but instructive examples and discuss the practical benefits of its application to different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. If the convexity assumption is relaxed it is a semi-metric function, i.e. the triangle inequality may not be satisfied. For example, r ij is effectively infinite if there is an obstacle blocking the path of a wireless signal, but adding a node k that avoids the obstacle may permit indirect connection between i and j, thus in this case r ij >r ik +r kj . We defer the treatment of obstacles to a future paper.

  2. Other link models can also be considered. These may include single-input multiple-output (SIMO), multiple-input single-output (MISO), and multiple-input multiple-output (MIMO) (see also [39]).

  3. Typically η=2 corresponds to propagation in free space but for practical reasons it is often modeled as η>2 for cluttered environments.

  4. This was taken from a standard Rayleigh fading link model (also see [39]).

References

  1. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Broadbent, S.R., Hammersley, J.M.: Percolation processes. Proc. Camb. Philol. Soc. 5, 629 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  3. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. (Debr.) 6, 290 (1959)

    Google Scholar 

  4. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. Coniglio, A., Angelis, U.De., Forlani, A.: Pair connectedness and cluster size. J. Phys. A, Math. Gen. 10, 1123 (1977)

    Article  ADS  Google Scholar 

  6. Stell, G.: Continuum theory of percolation. J. Phys., Condens. Matter 8, A1 (1996)

    Article  ADS  Google Scholar 

  7. Hill, T.L.: Statistical Mechanics. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  8. DeSimone, T., Demoulini, S., Stratt, R.M.: A theory of percolation in liquids. J. Chem. Phys. 85, 391 (1986)

    Article  ADS  Google Scholar 

  9. Hill, T.L.: Molecular clusters in imperfect gases. J. Chem. Phys. 23, 617 (1955)

    Article  Google Scholar 

  10. Chiew, Y., Glandt, E.: Percolation behaviour of permeable and of adhesive spheres. J. Phys. A, Math. Gen. 16, 2599 (1983)

    Article  ADS  Google Scholar 

  11. Safran, S.A., Webman, I., Grest, G.S.: Percolation in interacting colloids. Phys. Rev. A 32, 506 (1985)

    Article  ADS  Google Scholar 

  12. Hu, L., Hecht, D.S., Grüner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513 (2004)

    Article  ADS  Google Scholar 

  13. Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O.: Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 68, 041403(R) (2003)

    Article  ADS  Google Scholar 

  14. Lee, D.-H., Wang, Z., Kivelson, S.: Quantum percolation and plateau transitions in the quantum hall effect. Phys. Rev. Lett. 70, 4130 (1993)

    Article  ADS  Google Scholar 

  15. Kaminski, A., Das Sarma, S.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)

    Article  ADS  Google Scholar 

  16. Kim, J., Krapivsky, P.L., Kahng, B., Redner, S.: Infinite-order percolation and giant fluctuations in a protein interaction network. Phys. Rev. E 66, 055101(R) (2002)

    ADS  Google Scholar 

  17. Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629 (1992)

    Article  ADS  Google Scholar 

  18. Pueyo, S., de Alencastro Graca, P.M.L., Barbosa, R.I., Cots, R., Cardona, E., Fearnside, P.M.: Testing for criticality in ecosystem dynamics: the case of amazonian rainforest and savanna fire. Ecol. Lett. 13, 793 (2010)

    Article  Google Scholar 

  19. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678 (2000)

    Article  ADS  Google Scholar 

  20. Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface 6, 1121 (2009)

    Article  Google Scholar 

  21. Danon, L., et al.: Networks and the epidemiology of infectious disease. Interdisc. Persp. Infect. Diseases 2011, 284909 (2011)

    Google Scholar 

  22. Cohen, R., Havlin, S., ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  23. Wang, P., González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding the spreading patterns of mobile phone viruses. Science 324, 1071 (2009)

    Article  ADS  Google Scholar 

  24. Duffie, D., Manso, G.: Information percolation in large markets. Am. Econ. Rev. 97, 203 (2007)

    Article  Google Scholar 

  25. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)

    Article  ADS  Google Scholar 

  26. Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664 (2007)

    Article  ADS  Google Scholar 

  27. Parshani, R., Buldyrev, S., Havlin, S.: Critical effect of dependency groups on the function of networks. Proc. Natl. Acad. Sci. 108, 1007 (2011)

    Article  ADS  Google Scholar 

  28. Penrose, M.: Random Geometric Graphs. Oxford University Press, London (2003)

    Book  MATH  Google Scholar 

  29. Glauche, I., Krause, W., Sollacher, R., Greiner, M.: Continuum percolation of wireless ad hoc communication networks. Physica A 325, 577 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Paschos, G., Mannersalo, P., Stanczak, S.: Extending the percolation threshold using power control. In: IEEE WCNC, 1 (2009)

  31. Callaway, D., Newman, M., Strogatz, S., Watts, D.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  32. Li, J., Andrew, L., Foh, C., Zukerman, M., Chen, H.: Connectivity, coverage and placement in wireless sensor networks. Sensors 9, 7664 (2009)

    Article  Google Scholar 

  33. Ammari, H., Das, S.: Critical density for coverage and connectivity in three-dimensional wireless sensor networks using continuum percolation. IEEE Trans. Parallel Distrib. Syst. 20, 872 (2008)

    Article  Google Scholar 

  34. Franceschetti, M., Dousse, O., Tse, D., Thiran, P.: Closing the gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inf. Theory 53, 1009 (2007)

    Article  MathSciNet  Google Scholar 

  35. Mao, G., Anderson, B.: Towards a better understanding of large scale network models. IEEE/ACM Trans. Netw. 20, 408 (2012)

    Article  Google Scholar 

  36. Penrose, M.: On k-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Coon, J.P., Dettmann, C.P., Georgiou, O.: Impact of boundaries on fully connected random geometric networks. Phys. Rev. E 85, 011138 (2012)

    Article  ADS  Google Scholar 

  38. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  39. Coon, J.P., Dettmann, C.P., Georgiou, O.: Connectivity of confined dense networks: boundary effects and scaling laws. Preprint. arXiv:1201.4013 (2012)

  40. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the design of wireless networks. IEEE J. Sel. Areas Commun. 27, 1029 (2009)

    Article  Google Scholar 

  41. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1 (1966)

    Article  MATH  Google Scholar 

  42. Kyrylyuk, A., et al.: Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nat. Nanotechnol. 6, 364 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the directors of the Toshiba Telecommunications Research Laboratory for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestis Georgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coon, J., Dettmann, C.P. & Georgiou, O. Full Connectivity: Corners, Edges and Faces. J Stat Phys 147, 758–778 (2012). https://doi.org/10.1007/s10955-012-0493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0493-y

Keywords

Navigation