Skip to main content
Log in

Nonlocal Mechanism for Synchronization of Time Delay Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region, the units of a chaotic network characterized by GCD=1 are in a chaotic zero-lag synchronization, whereas for GCD>1, the network splits into GCD-clusters in which clustered units are in zero-lag synchronization. These results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps. Type (II) is exemplified by simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity, synaptic noise and distribution of delays within neurons belonging to a node and between connecting nodes. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the network splits into clusters equal to the greatest common divisor of loops composing the network (spatial) and the periodicity of the external stimuli (temporal). The results suggest that neural information processing may take place in the transient to synchronization and imply a much shorter time scale for the inference of a perceptual entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  2. Schuster, H.G., Just, W.: Deterministic Chaos. Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2005)

    Book  MATH  Google Scholar 

  3. Albert, R., Barabási, A.-L.: Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks, Oxford University Press, London (2003)

    Book  MATH  Google Scholar 

  5. Strogatz, S.H.: Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  6. Barabási, A.-L., Albert, R.A.: Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Phys. Rep. 469, 93 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Pecora, L.M., Carroll, T.L.: Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  9. Jost, J., Joy, M.P.: Phys. Rev. E 65, 016201 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  10. Atay, F.M., Biyikoglu, T.: Phys. Rev. E 72, 016217 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Phys. Rev. Lett. 91, 014101 (2003)

    Article  ADS  Google Scholar 

  12. Masoller, C., Marti, A.C.: Phys. Rev. Lett. 94, 134102 (2005)

    Article  ADS  Google Scholar 

  13. Wu, X., Wang, B., Zhou, T., Wang, W., Zhao, M., Yang, H.: Chin. Phys. Lett. 23, 1046 (2006)

    Article  ADS  Google Scholar 

  14. Sorrentino, F.: Chaos 17, 033101 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hong, H., Kim, B.J., Choi, M.Y., Park, H.: Phys. Rev. E 65, 067105 (2002)

    Google Scholar 

  16. Gawne, T.J., Richmond, B.J.: J. Neurosci. 13, 2758 (1993)

    Google Scholar 

  17. Zohary, E., Shadlen, M.N., Newsome, W.T.: Nature 370, 140 (1994)

    Article  ADS  Google Scholar 

  18. Vaadia, E., et al.: Nature 373, 515 (1995)

    Article  ADS  Google Scholar 

  19. Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M., Wolf, F.: Phys. Rev. Lett. 104, 058102 (2010)

    Article  ADS  Google Scholar 

  20. Shadlen, M.N., Newsome, W.T.: J. Neurosci. 18, 3870 (1998)

    Google Scholar 

  21. Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M.: Neural Comput. 20, 2185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steriade, M., McCormick, D.A., Sejnowski, T.J.: Science 262, 679 (1993)

    Article  ADS  Google Scholar 

  23. Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Nature 338, 334 (1989)

    Article  ADS  Google Scholar 

  24. Morison, R.S., Dempsey, E.W.: Am. J. Physiol. 135, 281 (1942)

    Google Scholar 

  25. Eckhorn, R., et al.: Biol. Cybern. 60, 121 (1988)

    Article  Google Scholar 

  26. Singer, W.C.M.: Annu. Rev. Neurosci. 18, 555 (1995)

    Article  Google Scholar 

  27. Nunez, P.L., Srinavasan, R.: Electric Fields of the Brain: The Neurophysics of EEG, 2nd edn. Oxford University Press, London (2006)

    Book  Google Scholar 

  28. Kanter, I., Zigzag, M., Englert, A., Geissler, F., Kinzel, W.: Europhys. Lett. 93, 60003 (2011)

    Article  ADS  Google Scholar 

  29. Englert, A., Heiligenthal, S., Kinzel, W., Kanter, I.: Phys. Rev. E 83, 046222 (2011)

    Article  ADS  Google Scholar 

  30. Kanter, I., Kopelowitz, E., Vardi, R., Zigzag, M., Kinzel, W., Abeles, M., Cohen, D.: Europhys. Lett. 93, 66001 (2011)

    Article  ADS  Google Scholar 

  31. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Science. Academic Press, New York (1979)

    Google Scholar 

  32. Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  33. Ma, R., Wang, J., Liu, Z.: Europhys. Lett. 91, 40006 (2010)

    Article  ADS  Google Scholar 

  34. Kestler, J., Kinzel, W., Kanter, I.: Phys. Rev. E 76, 035202 (2007)

    Article  ADS  Google Scholar 

  35. Lang, R., Kobayashi, K.: IEEE J. Quantum Electron. 16, 347 (1980)

    Article  ADS  Google Scholar 

  36. Ahlers, V., Parlitz, U., Lauterborn, W.: Phys. Rev. E 58, 7208 (1998)

    Article  ADS  Google Scholar 

  37. Klein, E., et al.: Phys. Rev. E 73, 066214 (2006)

    Article  ADS  Google Scholar 

  38. Murphy, T.E., Roy, R.: Nat. Photonics 2(12), 714–715 (2008)

    Article  ADS  Google Scholar 

  39. Uchida, A., et al.: Nat. Photonics 2(12), 728–732 (2008)

    Article  ADS  Google Scholar 

  40. Reidler, I., Aviad, Y., Rosenbluh, M., Kanter, I.: Phys. Rev. Lett. 103(2), 024102 (2009)

    Article  ADS  Google Scholar 

  41. Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: Nat. Photonics 4(1), 58–61 (2010)

    Article  ADS  Google Scholar 

  42. Kestler, J., Kopelowitz, E., Kanter, I., Kinzel, W.: Phys. Rev. E 77, 046209 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  43. Zigzag, M., Butkovski, M., Englert, A., Kinzel, W., Kanter, I.: Europhys. Lett. 85, 60005 (2009)

    Article  ADS  Google Scholar 

  44. Englert, A., et al.: Phys. Rev. Lett. 104, 114102 (2010)

    Article  ADS  Google Scholar 

  45. Zigzag, M., Butkovski, M., Englert, A., Kinzel, W., Kanter, I.: Phys. Rev. E 81, 036215 (2010)

    Article  ADS  Google Scholar 

  46. Flunkert, V., Yanchuk, S., Dahms, T., Schöll, E.: Phys. Rev. Lett. 105, 254101 (2010)

    Article  ADS  Google Scholar 

  47. Hodgkin, A.L., Huxley, A.F.: J. Physiol. 117, 500 (1952)

    Google Scholar 

  48. Abeles, M.: Corticonics. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  49. Braitenberg, V., Shuz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  50. Scannell, J.W., Blakemore, C., Young, M.P.: J. Neurosci. 15, 1463 (1995)

    Google Scholar 

  51. Braitenberg, V.: J. Comput. Neurosci. 10, 71 (2001)

    Article  Google Scholar 

  52. Evarts, E.V.: J. Neurophysiol. 27, 152 (1964)

    Google Scholar 

  53. Frank, H.: Graph Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  54. Shinomoto, S., et al.: PLoS Comput. Biol. 5, e1000433 (2009)

    Article  MathSciNet  Google Scholar 

  55. Shimokawa, T., Shinomoto, S.: Neural Comput. 21, 1931 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Thomson, A.M., Deuchars, J.: Trends Neurosci. 17, 119 (1994)

    Article  Google Scholar 

  57. Tsodyks, M.V., Markram, H.: Proc. Natl. Acad. Sci. USA 94, 719 (1997)

    Article  ADS  Google Scholar 

  58. Milo, R., et al.: Science 303, 1538 (2004)

    Article  ADS  Google Scholar 

  59. Barabasi, A.-L., Albert, R.A.: Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Kanter.

Additional information

It is an honor and a privilege to contribute an article to this volume dedicated to Professor Cyril Domb, FRS. I have known Professor Domb for many years in two different capacities, both as an outstanding researcher in statistical mechanics and also as a human being. I need not write anything regarding the first capacity—Professor Domb’s accomplishments as a researcher are world-renowned. But I do want to comment on the second capacity. Professor Domb has served me as a guiding light regarding what it means to be an exemplary human being. His honesty and forthrightness, his thoughtfulness toward others, and his high moral standards give special meaning to the term “humanity.'' His life throughout nine decades personifies the words of the Psalmist: “to walk honestly, to act justly, and to speak the truth'' (15:2). This stirring passage describes the essence of Professor Cyril Domb. (Ido Kanter)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanter, I., Kopelowitz, E., Vardi, R. et al. Nonlocal Mechanism for Synchronization of Time Delay Networks. J Stat Phys 145, 713–733 (2011). https://doi.org/10.1007/s10955-011-0361-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0361-1

Keywords

Navigation