Skip to main content
Log in

Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider one dimensional systems of particles interacting with each other through long range interactions that are translation invariant. We seek quasi-periodic equilibrium states.

Standard arguments show that if there are continuous families of quasi-periodic ground states, the system can have large scale motion, if the family of ground states is discontinuous, the system is pinned down. The transition between the two cases is called breakdown of analyticity and has been widely studied.

We use recently developed fast and efficient algorithms to compute all the continuous families of ground states even close to the boundary of analyticity. We show that the boundary of analyticity can be computed by monitoring some appropriate norm of the computed solutions.

We implemented these algorithms on several models. We found that there are regions where the boundary is smooth and the breakdown satisfies scaling relations. In other regions, the scalings seem to be interrupted and restart again. We present a renormalization group explanation of these phenomena. This suggest that the renormalization group may have some complicated global behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greene, J.M.: A method for determining a stochastic transition. J. Math. Phys. 20(6), 1183 (1979)

    Article  ADS  Google Scholar 

  2. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Physica D 8, 381 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Percival, I.C.: Variational principles for the invariant toroids of classical dynamics. J. Phys. A 7, 794 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  4. Percival, I.C.: A variational principle for invariant tori of fixed frequency. J. Phys. A 12, L57 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  5. MacKay, R.S.: Scaling exponents at the transition by breaking of analyticity for in commensurate structures. Physica D 50, 71 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chandre, C., Jauslin, H.R.: Renormalization-group analysis for the transition to chaos in Hamiltonian systems. Phys. Rep. 365, 1 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Mather, J.: A criterion for the nonexistence of invariant circles. Inst. Hautes Études Sci. Publ. Math. 63, 153–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Frenkel, J., Kontorova, T.: On the theory of plastic deformation and twinning. Acad. Sci. USSR J. Phys. 1, 137 (1939)

    MathSciNet  Google Scholar 

  9. Calleja, R., de la Llave, R.: A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification. Nonlinearity 23, 20292058 (2010)

    Article  Google Scholar 

  10. Olvera, A., Simó, C.: An obstruction method for the destruction of invariant curves. Physica D 26, 181 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  12. de la Llave, R., Olvera, A.: The obstruction criterion for non-existence of invariant circles and renormalization. Nonlinearity 19, 1907 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Falcolini, C., de la Llave, R.: A rigorous partial justification of Greene’s criterion. J. Stat. Phys. 67, 609 (1992)

    Article  MATH  ADS  Google Scholar 

  14. Lomelí, H.E., Calleja, R.: Heteroclinic bifurcations and chaotic transport in the two-harmonic standard map. Chaos 16(8), 023117 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. Cardaliaguet, P., Da Lio, F., Forcadel, N., Monneau, R.: Dislocation dynamics: a nonlocal moving boundary. In: Free Boundary Problems. Internat. Ser. Numer. Math., vol. 154, pp. 125–135. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  16. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Nonlinear Dynamics and Evolution Equations. Fields Inst. Commun., vol. 48, pp. 13–52. Am. Math. Soc., Providence (2006)

    Google Scholar 

  17. Rado, G.T., Shul, H. (eds.): Magnetism, vol. IIB. Academic Press, New York (1963)

    Google Scholar 

  18. Bügel, S., Bihimayer, G.: Magnetism of Low-dimensional Systems: Theory. Handbook of Magnetism and Advanced Magnetic Materials, vol. 1. Wiley, New York (2007)

    Google Scholar 

  19. Morse, H.M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26, 25 (1924)

    MATH  MathSciNet  Google Scholar 

  20. Candel, A., de la Llave, R.: On the Aubry-Mather theory in statistical mechanics. Commun. Math. Phys. 192, 649 (1998)

    Article  MATH  ADS  Google Scholar 

  21. Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21, 457 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. de la Llave, R., Valdinoci, E.: Ground states and critical points for generalized Frenkel- Kontorova models in ℤd. Nonlinearity 20, 2409 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. de la Llave, R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9, 835 (2008)

    Article  MATH  ADS  Google Scholar 

  24. Calleja, R., de la Llave, R.: Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps. Nonlinearity 22, 1311 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. de la Llave, R.: A tutorial on KAM theory. In: Smooth Ergodic Theory and Its Applications (Seattle, 1999), pp. 175–292. Am. Math. Soc., Providence (2001),

    Google Scholar 

  26. Salamon, D., Zehnder, E.: KAM theory in configuration space. Comment. Math. Helv. 64, 84 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Levi, M., Moser, J.: A Lagrangian proof of the invariant curve theorem for twist mappings. In: Smooth Ergodic Theory and Its Applications. Proc. Sympos. Pure Math., vol. 69 (Seattle, 1999), pp. 733–746. Am. Math. Soc., Providence (2001)

    Google Scholar 

  28. Jungreis, I.: A method for proving that monotone twist maps have no invariant circles. Ergod. Theory Dyn. Syst. 11, 79 (1991)

    Article  MathSciNet  Google Scholar 

  29. Stark, J.: An exhaustive criterion for the nonexistence of invariant circles for area-preserving twist maps. Commun. Math. Phys. 117, 177 (1988)

    Article  MATH  ADS  Google Scholar 

  30. MacKay, R.S., Meiss, J.D., Stark, J.: Converse KAM theory for symplectic twist maps. Nonlinearity 2, 555 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Kadanoff, L.: Scaling laws for Ising models near tc. Physics 2, 263 (1966)

    Google Scholar 

  32. Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena. International Series in Pure and Applied Physics. McGraw-Hill International Book Co., New York (1978). ISBN 0-07-001575-9

    Google Scholar 

  33. Kadanoff, L.P.: Scaling for a critical Kolmogorov-Arnol’d-Moser trajectory. Phys. Rev. Lett. 47, 1641 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. Shenker, S.J., Kadanoff, L.P.: Critical behavior of a KAM surface. I. Empirical results. J. Stat. Phys. 27, 631 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  35. MacKay, R.S.: A renormalisation approach to invariant circles in area-preserving maps. Physica D 7, 283 (1983), order in chaos (Los Alamos, NM, 1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Koch, H.: A renormalization group for Hamiltonians, with applications to KAM tori. Ergod. Theory Dyn. Syst. 19, 475 (1999)

    Article  MATH  Google Scholar 

  37. Abad, J.J., Koch, H., Wittwer, P.: A renormalization group for Hamiltonians: numerical results. Nonlinearity 11, 1185 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Koch, H.: A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. 11, 881 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Koch, H.: Existence of critical invariant tori. Ergod. Theory Dyn. Syst. 28, 1879 (2008)

    Article  MATH  Google Scholar 

  40. Arioli, G., Koch, H.: The critical renormalization fixed point for commuting pairs of area-preserving maps. Commun. Math. Phys. 295, 415 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Dyson, F.J.: An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  42. Collet, P., Eckmann, J.-P.: A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics. Lecture Notes in Physics, vol. 74. Springer, Berlin (1978)

    Google Scholar 

  43. de la Llave, R., Olvera, A., Petrov, N.P.: Universal scalings of universal scaling exponents. J. Phys. A 40, F427 (2007)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Calleja.

Additional information

The work of R.C. has been supported by NSF grants and a FQRNT grant.

The work of R.L. has been supported by NSF DMS 0901389, and by Texas Coordinating board NHARP 0223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, R., de la Llave, R. Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation. J Stat Phys 141, 940–951 (2010). https://doi.org/10.1007/s10955-010-0085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0085-7

Keywords

Navigation